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A B S T R A C T

The production of wild fish has remained relatively stable in the last two decades, whereas aquaculture organism
production has increased to the point where it has exceeded wild catches. In this context, accurate and up-to-date
information about the current usage of marine areas for aquaculture is crucial for the planning of marine ac-
tivities. However, this data is often limited to national authorities, and discrepancies between planned and real
practices can arise in available data. In this study, a novel methodology to automatically map and verify the
current activity of aquaculture crops across European regions based on freely available satellite data is proposed.
The European Space Agency’s (ESA) Sentinel-1 mission provides Synthetic Aperture Radar (SAR) images, which
serve as the basis for the analysis. Multiple SAR images of the same locations are processed using ESA Sentinel
Application Platform (SNAP) software and merged to remove temporal noise-like artifacts caused by factors such
as ships and waves. Next, the iDPolRAD algorithm is employed to detect potential aquaculture sites, which
initially include noise from coastal zones and unwanted human and natural structures that pass through the
filter. The aquaculture sites are classified using a ResNet18 model with 93% of the sites correctly classified. This
implies that it is feasible to monitor marine areas using satellite radar data to track aquaculture areas. However,
generalization power across regions is poor likely due to the diversity of types of structures used and species
cultivated. Further studies are needed to investigate factors influencing the detectability of different aquaculture
sites such as cage geometry or SAR image resolution in order to enhance the accuracy and comprehensiveness of
the mapping process. This study highlights the potential of SAR data, coupled with image processing and clas-
sification techniques, as a viable means to map large marine areas dedicated to aquaculture.

1. Introduction

Wild fish catches have remained stable over the past two decades and
are projected to decline due to climate change (Erauskin-Extramiana
et al., 2023; Lotze et al., 2019; Tittensor et al., 2021). In contrast, the
production of aquatic organisms from aquaculture is increasing, sur-
passing wild catches, with global aquaculture production of fish for
human consumption and aquatic plants reaching a record 114.5 million
tons in 2018 (FAO, 2020). In the same year, aquaculture production in
the European Union (EU) reached 3.4 million tons, with mollusks,
particularly mussels (39 %), Atlantic salmon (Salmo salar, 13 %), and

Rainbow trout (Oncorhynchus mykiss, 13 %) dominating the produc-
tion. While global mussel production is increasing, it has been declining
in the EU for several decades (Avdelas et al., 2021). Spain leads EU
production, accounting for 45 % of the total weight, followed by Italy,
France, the Netherlands, Great Britain, and Ireland (Hough, 2022).
Scotland is the top producer of diadromous fishes in the EU, particularly
salmon (Maire et al., 2021).

Aquaculture operations can impact ecosystems in various ways,
including disease transmission between farms and wildlife, water
pollution, salinization, and soil acidification (Martinez-Porchas &
Martinez-Cordova, 2012). These activities may also lead to conflicts
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with existing fisheries and trade-offs with other ecosystem services
(Alleway et al., 2019; Coccoli et al., 2018). Modern fisheries and marine
spatial planning aim to follow an ecosystem-based approach that re-
quires consideration of all human activities and their pressures including
aquaculture (Dong et al., 2024; Fernandes et al., 2023; Pedreschi et al.,
2019). The rapid growth of aquaculture and its regional management
makes it difficult to track its presence at a large scale beyond the na-
tional level (Fernandes-Salvador et al., 2021). In addition, current
available mapping from regional and national authorities might not
distinguish between areas where exploitation is allowed or planned and
areas where the activity is already present. Given the above, the
development of new methodologies for the control of this type of ac-
tivity may be necessary.

One way to solve this could be to have an alternative observation-
based method to collect international data, and not rely on different
authorities to get it. Earth observation data emerges as this alternative
not dependent on the public reporting of each region. The availability of
earth observation data has exponentially increased since 2014, when the
first satellite of the Copernicus program was launched. The Copernicus
Earth observation program (Regulation (EU) No 377/2014 of the Eu-
ropean Parliament and of the Council of 3 April 2014 Establishing the
Copernicus Programme and Repealing Regulation (EU) No 911/2010
Text with EEA Relevance, 2014) is implemented by the European
Member States, the European Space Agency (ESA), the European Or-
ganization for the Exploitation of Meteorological Satellites (EUMET-
SAT), the European Centre for Medium-Range Weather Forecasts
(ECMWF), EU Agencies and Mercator Ocean, being aimed at monitoring
the globe with high quality and freely accessible data. This program
started in 1998 and is based on satellite and in situ observations (Bor-
geaud et al., 2015). Currently, it includes the Sentinel missions, which
are made up of both dedicated satellites and instruments onboard
EUMETSAT’s weather satellites. These Sentinel missions consist of
several satellites that provide different types of remote sensing data. The
first of these missions, Sentinel-1 (Torres et al., 2012), was composed of
two twin satellites (Sentinel-1A and Sentinel-1B, the latter having ended
its mission at the beginning of August 2022 due to an unexpected failure
in the radar antenna power supply unit) sharing the same polar orbit.
They are equipped with a Synthetic Aperture Radar (SAR), so they can
capture data day and night and under almost any weather condition
(ESA Communications, 2012; Geudtner et al., 2021). SAR satellites emit
successive pulses of electromagnetic radiation to measure the signal
reflected off the Earth’s surface. The incident signal interacts with the
elements on the terrain and then is backscattered and measured by the
radar according to the sensor frequency, the angle of incidence, and the
geometry and dielectric properties of the target (Ulaby, 1982; Ulaby
et al., 1981). Sentinel-1 satellites operate at C-band, with a central fre-
quency of 5.405 GHz with different acquisition modes and product types
available. The emitted microwaves are horizontally (H) or vertically (V)
polarized, then the sensor measures the backscatter in the same (co-
polar) or orthogonal (cross-polar) polarization. In this study, the Inter-
ferometric Wide Swath (IW) mode is employed and hence two different
polarization channels (i.e., VH and VV) will be available.

Satellite imagery either with passive or active sensors has already
been used in marine science for many applications (Migliaccio et al.,
2022), such as Iceberg detection (Marino et al., 2016; Soldal et al.,
2019), ship detection (Iervolino et al., 2019), flood detection (Fichtner
et al., 2023) and aquaculture monitoring (Detoni et al., 2023) and
detection (Ballester-Berman et al., 2018; Marino et al., 2019). Con-
cerning the latter, Ottinger et al., (2017) showed that images collected in
this way can be used to detect aquaculture ponds in some river deltas in
China and Vietnam, using high-resolution optical images to validate the
results. We aim to detect aquaculture structures (i.e. not pounds) based
only on SAR data, as optical data for specific periods can be hard to
obtain. Kurekin et al., (2022) used a similar approach but applied to
detect coastal aquaculture sites in the Philippines. Optical images from
the Sentinel-2 mission were used to differentiate between land and sea.

Validation was done by mixing historical records of optical images and
in-situ observations. Prasad et al. (2019) also used optical imagery as a
supporting method but applied an object-based classification method-
ology adapted to the particular shape of aquaculture fish ponds. All
these previous works used a median operator along the time dimension
to isolate the dominant targets in an area, proving that it can be very
effective for this work. Also noteworthy is the limited spatial analysis, as
they processed very specific areas.

Our work here aims to develop a methodology capable of mapping
European aquaculture compounds by using image analysis and machine
learning. This mapping is generated from freely available radar data of
satellite imagery from the Copernicus program, in the expectation that
automatic mapping will speed up the rate at which aquaculture distri-
bution estimates can be made, making it possible to monitor areas where
official data is not available or not accurate.

2. Material and methods

This section describes the pipeline followed from the acquisition of
the data to the final classification. Fig. 1 serves as a graphical summary.
First, data collected by the Sentinel-1 satellites (Torres et al., 2012) was
downloaded to a local repository (sec. 2.1). Then, these images were
preprocessed employing open-source ESA Sentinel Application Platform
(SNAP) software to obtain calibrated, despeckled, and geocoded images
(sec. 2.2). Once the images were preprocessed, a temporal-wise median
was computed for each pixel, to merge them and delete unwanted noise
(sec 2.3). The iDPolRAD algorithm (Marino et al., 2016) (sec 2.4) and a
posterior classifier were applied to the images to detect the presence of
aquaculture sites (sec. 2.5).

2.1. Acquisition of data from selected areas

Five areas of interest within Western Europe were selected for the
study (Fig. 2). The main reason for choosing these areas was that data on
the actual placement of aquaculture was available (Fernandes-Salvador
et al., 2021). That information was in the form of polygons or points in
shapefiles. The polygons provide the exact area dedicated to aquaculture
in each area, while the point informs of the presence of one or more
aquaculture structures without providing any further information on
their distribution.

The Sentinel-1A&B satellites, which were used in this study, collect
data more frequently over Europe and other areas of interest so there is a
higher temporal density of data for these areas (Torres et al., 2012). The
SAR images employed were downloaded from the Copernicus Data
Space Ecosystem (CDSE),1 using the Alaska Satellite Facility (ASF) Data
Search2 as an alternative mirror when certain products were not avail-
able. APIs provided by CDSE and ASF were used to automate the
download of products specifying the area of interest and time span of
this study. The images were acquired in the Interferometric Wide Swath
(IW) mode with the Ground Range Detected High resolution (GRDH)
format, whose spatial resolution is 20x22 meters (range and azimuth,
respectively) and a swath width of 250 km.

2.2. SAR image preprocessing

SAR satellite data preprocessing involves a series of procedures
designed to correct signal artifacts, improve image quality, and extract
features. This step is crucial to ensure accurate and reliable data. The
European Space Agency (ESA) developed an open-source Earth obser-
vation analysis tool that can automate all the preprocessing. This
toolbox is the Sentinel Applications Platform (SNAP) which integrates
various tools and APIs to facilitate the view and processing of remotely

1 https://dataspace.copernicus.eu/.
2 https://search.asf.alaska.edu.
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sensed data (Zuhlke et al., 2015). Using the programming language
Python and some libraries that employ SNAP’s APIs, the whole pipeline
from data filtering and selection to preprocessing can be automated. The
files generated after each preprocessing step greatly increased in size, so
only the final file was saved. This file includes the images for the VV and
VH polarizations, and the latitude, longitude, and elevation layers of
each pixel. SNAP has many formats available to export the data, but the
GeoTIFF format was chosen as it is a well-established standard and
compatible with most GIS software. The process was based on the
standard preprocessing of Sentinel-1 data (Filipponi, 2019). We divided
it in five distinct steps.

1) Apply Orbit-File. The metadata of a SAR product contains orbit
state vectors to provide accurate satellite position and velocity in-
formation. However, these vectors are not accurate and can be
improved with precise orbital files calculated after the generation of
the product.

2) Thermal Noise Removal. System-induced thermal noise can affect
radar signals, especially in the cross-polar channel. This stage re-
duces thermal noise by employing product annotations.

3) Calibration. SAR calibration is used to make the value of the pixels
proportional to the radar backscatter. The typical method used to

generate the products does not include radiometric corrections, so
significant bias remains. This correction is also necessary to compare
SAR images acquired with different satellites or acquired from the
same satellite but at different times.

4) Speckle-Filter. Interference among many elementary scattering
centers inside the same resolution cell occurs due to the coherent
nature of the SAR image formation process (Goodman, 1976). These
interferences can be constructive or destructive, leading to image
quality degradation by a granular noise which is called speckle. The
boxcar (smoothing) filter has been proven to yield reasonable results
for the present application (Ballester-Berman et al., 2018).

5) Terrain-Correction. Distances are distorted in the SAR product due
to topographical variations of the scene and the tilt of the satellite.
Data from targets not directly located at the satellite’s nadir will have
some distortion. Terrain correction is used to compensate for these
distortions. In addition, this step geocodes the SAR image.

2.3. Temporal merging of SAR images

A major problem of employing radar imagery for target detection
such as aquaculture structures, is the potential ambiguity of the detec-
tion with other types of structures also present in the ocean (i.e., ships,

Fig. 1. Diagram summarizing the methodology of this study. See the paragraph above for a summary of the figure.
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oil rigs, wind farms, drifting objects, etc.). These moving objects can be
considered as noise in a sequence of images. To eliminate them, a
temporal median of each pixel was calculated by merging multiple
products of the same area (Kurekin et al., 2022). For this purpose, two
date ranges were selected. The first, from August 1, 2021, to August 31,
2021, and the second, from June 1, 2023, to June 30, 2023. This way,
most of the noise-like artifacts caused by transient objects were removed
and only static objects were retained.

Adverse weather conditions causing ocean waves are known to in-
crease the backscattering power (Cloude, 2009; Lee & Pottier, 2009).
Assuming that these conditions are not permanent, the unwanted high
backscattering that causes the bright pixels can also be treated as noise
and removed before applying the detection algorithm. The sea state
during the selected periods was analyzed to check if there were any
major storms during these periods. To do this, the mean and standard
deviation of the Significant Wave Height (SWH) was taken as a refer-
ence. The number of products and sea conditions in the date ranges for
each of the selected areas are shown in Table 1. The sea surface condi-
tions were determined using data from Copernicus Marine Services,
accessed through the Copernicus Marine Toolbox API. SWH data from

Ireland, Scotland, and the northern part of France were obtained using
the Atlantic-European North West Shelf-Wave Physics Reanalysis
product (European Union-Copernicus Marine Service, 2020), while the
Mediterranean Sea Waves Reanalysis product (Korres et al., 2021) was
used in Galicia and the southern part of France. The data suggest that
there was no major storm during these time periods and that all sites

Fig. 2. The areas of the Atlantic Ocean that have been selected for this work.

Table 1
Number of products downloaded and significant wave height data (mean and
standard deviation) for each of the areas in the study during the selected time
periods.

Area Time period

2021/08/01 – 2021/08/31 2023/06/01 – 2023/06/30

Products SWH Products SWH

Galicia 40 1.17 m ± 0.44 m 19 0.92 m ± 0.38 m
France 310 0.96 m ± 0.62 m 152 0.73 m ± 0.41 m
Ireland 201 1.07 m ± 0.85 m 98 0.87 m ± 0.8 m
Scotland 160 0.84 m ± 0.76 m 72 0.57 m ± 0.55 m
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have approximately the same conditions, although the products from
2023 have slightly smaller waves. Based on the sea state codes of the
World Meteorological Organization, the sea condition was primarily
slight with intermittent moderate seas, which did not hinder the
detection capabilities of Sentinel-1 data. The data in Table 1 also shows
that the number of products decreased by approximately 50 % from
2021 to 2023. This is because one of the two Sentinel-1 constellation
satellites, Sentinel-1B, failed between late 2021 and mid-2022.

The merged products were used as input for the detection stage, but
first, all non-marine areas are masked from the GeoTIFF. Once the
product has been preprocessed and the land has been discarded, the
detection of aquaculture zones begins.

2.4. Tentative aquaculture compound detection

The intensity Dual-Polarization Ratio Anomaly Detector (iDPolRAD)
algorithm was used to detect aquaculture zones. This algorithm was
developed to detect icebergs using Sentinel-1 observations (Marino
et al., 2016) and it is based on the idea that an object emerging from the
surface will produce an anomaly in the volume scattering, so it searches
for areas of high contrast between the two polarization channels in small
windows of the image. This idea is driven by the theoretical aspects
covered in radar polarimetry which studies the interaction of electro-
magnetic waves with matter. Fig. 3 illustrates the fundamental scat-
tering mechanisms. It must be noted that the contribution of any of those
mechanisms depends upon the specific polarization state and the ge-
ometry, orientation, size, and material making up the target under
consideration. For further details on radar scattering processes, see
(Cloude, 2009; Lee & Pottier, 2009).

Once the iDPolRAD detection algorithm has been applied, it is
necessary to classify the detections. This classification aims to separate
possible aquaculture zones from artifacts that remain in the image.
These artifacts can be caused by harbors, areas where the tide changes a
lot, or other types of structures related to human activity. To perform
this classification, it is necessary to define certain parameters, such as
the minimum value returned by the algorithm that will be considered as
a detection and the maximum distance at which two detections can be
found to consider them as part of the same aquaculture site. For this
purpose, a test area was selected where the real data of aquaculture
zones are available. The area chosen to find the optimal parameters was
four of the five estuaries of Rías Baixas in Galicia, Spain (Fig. 2, area 1).
Specifically, the estuaries of Ría de Vigo, Ría de Pontevedra, Ría de
Arousa, and Ría de Muros e Noia. This area measures approximately 80
km from north to south and 40 km from east to west, about 3,200 square
kilometers. Galicia is the largest producer of mussels through aquacul-
ture in Spain (Labarta & Fernández-Reiriz, 2019), so it is not surprising
that more than 3,000 aquaculture sites are located within these estu-
aries. The large number of aquaculture sites in the area, their precise
mapping, and the placement of the structures above the water made this
area ideal for conducting the parameter selection experiment.

2.5. Final aquaculture compound classification

The final discrimination between noise and aquaculture zones was
performed using a deep learning approach. More specifically, we
assessed the performance of three neural network architectures, namely
ResNet18, ResNet34 (He et al., 2016), and a custom implementation of
Vision Transformers (ViT) (Gani et al., 2022). These architectures,
characterized by 11 million, 21 million and 2.8 million trainable pa-
rameters respectively, are relatively shallow, resulting in low compu-
tational costs for both training and execution compared to deeper
models. The limited number of parameters also decreases the risk of
overfitting, a concern that arises when a model’s complexity surpasses
the available training data (Gupta et al., 2018). Table 2 provides details
on the used infrastructure and parameters. While all architectures
showed similar performance in the conducted experiments, ResNet18
was selected based on a careful balance of the time spent to train it and
the results obtained. The final model was implemented using FastAI’s
(PyTorch) ResNet18 architecture without pre-trained weights.

Given that the images generated in the previous steps varied in size
due to the nature of the detection process, they were uniformly resized
to 32x32 pixels to facilitate processing. Data augmentation techniques
were employed, including random rotation within the [0, 360] degree
range, random vertical and horizontal flipping, and zooming in the
range of [1.0, 3.0]. These measures contribute to enhancing the model’s
robustness. Models were trained until convergence to ensure optimal
performance.

3. Results

This section presents the results related to the selection of segmen-
tation parameters to distinguish human platforms at sea. It also provides
insights into the statistical performance of the classification model,

Fig. 3. Scattering of electromagnetic waves on different sea surface conditions and aquaculture elements. Left figure: calm sea at the surface. Right image, rough sea.
Types of scattering. a) Surface scattering, b) Double-bounce scattering, c) Volume scattering. In this example, fish farms (2) can be located using SAR imagery, while
mussel and kelp farms (1) can’t.

Table 2
Parameters and the values that were tested during different runs and the ones
that were used to train the final model.

Hyperparameter Search space Best assignment

Number of epochs 1 – 1000 600
Number of folds 4–5 5
Model architecture ResNet18, ResNet34, ViT ResNet18
Weight decay 0.1 0.1
Batch size 4 4
Other parameters Value

Computing infrastructure Tesla V100 16 GB (x2)
Number of search trials 15
Search strategy Manual Search
Best validation accuracy 93 %
Training duration 1 h 30 min – 3 h 45 min
Validation 5-fold cross-validation
Code, data and model Zenodo / GitHub (Lekunberri et al., 2023)

X. Lekunberri et al.
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focusing on its training to distinguish aquaculture sites from noise and
other platforms, and its testing against ground truth data, sourced from
national authorities and visually verified aquaculture locations.

3.1. Tentative aquaculture compound detection

The optimal segmentation parameters for SAR-derived images were
determined through an iterative search. This search considered the
number of products to merge, the maximum distance between neigh-
boring sites, and a threshold for discarding points with the weakest
backscatter. To assess the effectiveness of different parameter combi-
nations, the Intersection over Union (IoU) between the detections and
ground truth data was calculated as the evaluation criterion. The IoU
quantifies the overlap by measuring the area of the predicted aquacul-
ture zone that intersects with the ground truth, divided by the sum of
both areas. A resulting IoU value of 0 indicates no overlap, while a value
of 1.0 reflects a perfect match. Several runs were conducted using data
spanning up to 21 weeks, but after 6 weeks of merging there was no
significant improvement in the maximum reported IoU. Fig. 4 shows the
data obtained by merging 6 weeks’ worth of data.

For the detection threshold, a range of values from 0 to 10 in in-
crements of 1 were tested, where 0 indicates the use of all detections and
10 implies the discarding of the weakest 10 %. A similar approach was
taken with the maximum distance required to consider two detections as
neighbors, ranging from 150 to 350 m with an increment factor of 10 m.
The optimal configuration was achieved at a maximum distance of 350
m with a threshold of 1, resulting in an IoU of 0.5211.

3.2. Final aquaculture compound classification

After the segmentation process, the tentative aquaculture areas were
classified using a deep learning model. As previously mentioned, two
ResNet and one ViT architecture were tested. The deepest of the con-
volutional networks, ResNet34, overfitted in a few epochs and failed to
provide any useful results. It appears that, despite its relatively small
size, this architecture is too large for our data. In contrast, the other two
architectures, ResNet18 and ViT, achieved good results. Table 3 shows
some statistics to compare both networks where, in all of the metrics, the
ResNet18 showed superior performance but was statistically significant
in F1 score, accuracy, and specificity.

Another factor that was considered during the training process was
whether to use a network with pretrained weights or not. The confusion
matrices in Fig. 5 provide a comparative analysis of the deep learning
model using those two approaches: pre-trained and non-pre-trained
weights. The non-pre-trained approach (Fig. 5b) shows superior accu-
racy (90% compared to 59 %), particularly excelling in the classification

of aquaculture (93 %). While pre-trained networks demonstrate higher
accuracy in noise classification (92 %), this approach performs poorly
with targeted aquaculture images (27 %), resulting in a 73 % misclas-
sification of aquaculture sites classified as noise. In contrast, the non-
pre-trained approach (Fig. 5b) not only achieves superior overall accu-
racy (90 %) but also maintains a balanced performance between aqua-
culture (93 %) and noise (87 %). Moreover, the misclassification of
aquaculture sites as noise is very rare (7 %) in this non-pre-trained
approach. A trade-off exists, where 13 % of noise is incorrectly classi-
fied as aquaculture sites. Despite this, the model can be considered to
have competitive performance and a postprocessing step can be
employed to filter out some of this noise.

The selected model demonstrated good performance, but its ability
to generalize to new aquaculture areas may be constrained by the
considerable diversity of structures across regions. To assess the net-
work’s generalization power with new sites, cross-validation was con-
ducted, treating each of the five areas as a subset for testing. We
followed a leave-one-out strategy, where one site was reserved for
testing while the model learned from the rest. However, the results
revealed high rates of false positives and false negatives, with accuracies
not surpassing those of random classification.

Similar results persisted when sites were paired for testing and
learning with another two sites, as outlined in Table 4. The models
showed accuracies comparable to random chance (41 ± 12 %), consis-
tent with sensitivities and specificities of either 0 % or 100 %. This lack
of generalization power to new areas can be attributed to the limited
number of available training images in each aquaculture area (56 in
France, 131 in Galicia, 83 in Ireland, and 331 in Scotland), coupled with
the variability in types of aquaculture sites and cage geometry.

Investigating the ineffectiveness of training data separation based on
geographical areas, an analysis of the model’s learning behavior was
conducted to discern whether the issue stemmed from the diverse nature
of aquaculture types across regions. To visually represent this behavior,
we employed the Uniform Manifold Approximation and Projection
(UMAP) technique, known for its ability to reduce data dimensionality
and facilitate visualization (McInnes et al., 2020). Fig. 6 showcases the
application of UMAP to comprehend the model’s performance, with
data color-coded based on their respective areas of origin.

The transformed data reveals four elongated clusters, each depicted
with a pie chart illustrating the distribution of areas within. Notably, the
cluster situated in the bottom left corner stands out due to its smaller size
(comprising 61 elements) and a predominant concentration of images
from Galicia (74 %). Images from other regions within this cluster are
mostly from Scotland (23 %), which also maintains a substantial pres-
ence in the remaining clusters. In contrast, the other three clusters
exhibit similar area distributions, with France consistently accounting
for around 10 % and Ireland for around 15 %. While Galicia and Scot-
land show varying percentages within these clusters, the sum of both
regions remains stable at approximately 75 %. These percentage dis-
tributions correspond closely to the proportion of areas represented in
each geographical zone. While these findings will be further discussed,
they offer valuable insights into the model’s generalization capabilities.

Understanding the different parameters of the model with regard to
aquaculture and noise classification is crucial to assess the model’s
performance. However, the primary objective of this work is to identify
actual aquaculture areas. Fig. 7 shows a map centered on the Rías Baixas
region of Galicia. As can be observed, the data used as ground truth

Fig. 4. All possible values for a given area plotted as a 2D surface. This specific
case belongs to the merging of 6 weeks’ worth of data.

Table 3
Mean and standard deviation for ResNet18 and ViT, the two architectures that
showed similar results. Paired sample t-test calculated p < 0.05 (*), p < 0.01 (†)
and p < 0.001 (‡).

Architecture F1 Score* Accuracy* Sensitivity Specificity*

ResNet18 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.04 0.90 ± 0.03
ViT 0.83 ± 0.03 0.85 ± 0.02 0.84 ± 0.06 0.83 ± 0.03

X. Lekunberri et al.
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around 42.5◦N 8.9◦W is inaccurate, as the detected (and manually
verified) aquaculture area is much larger than officially reported. This
provides evidence of the necessity of a real-time data tool like the one

presented in this work. Most of the green polygons, indicating true
aquaculture zones, contain one or more green points, indicating aqua-
culture zones detected by the trained model. It is important to note that
the number of points per polygon is not an indicator of the model’s
confidence in its prediction. Instead, it suggests that the model struggled
to group these detections into a single entity. Expanding the image with
offshore data introduces a substantial amount of noise, but as open
ocean areas do not contain aquaculture cages, they can be cropped.

4. Discussion

This work proposes a method for automatic detection and classifi-
cation of aquaculture zones based on satellite SAR data and deep
learning. The system offers full automation, enabling the monitoring of
regional status evolution by defining specific areas. Given the periodic
renewal of Sentinel-1 radar imagery, which is freely available, this
methodology provides a cost-effective means to track aquaculture ac-
tivity. To enhance the accuracy of detection, the merging of multiple
radar detections was proposed, employing a temporal median to discard
moving objects and noise, thereby improving upon previous approaches
(Ballester-Berman et al., 2018; Marino et al., 2019). Adjustments in the
number of images to be merged were made based on temporal resolu-
tion, ensuring adaptability to detect changes occurring over different
time scales. Typically, an average of 3 to 5 images were used. In the final
stage, a deep learning approach was employed for image classification,
reaching an accuracy of 93 %, surpassing results in other works such as
Ottinger et al., (2017) and Kurekin et al., (2022).

One of the major limitations encountered in this study revolves
around the diversity of structures used for different aquaculture species
and their corresponding geometries, which can be broadly categorized
into two groups: (1) structures partially above sea level and (2) struc-
tures completely submerged (Chu et al., 2020). The former, commonly
employed for fish or bivalve breeding and anchored to the seabed, are
the ones that we were able to detect using SAR data. Any of these
structures will interact and return a signal to the satellite, even if it is
smaller than 20x22m (Sentinel-1 resolution). The returned signal is an
average that includes the interactions of the entire resolution cell. Since
the signals returned by the water-structure interaction are much larger
than those returned by the water surface, this average is normally suf-
ficient to detect such structures. The second type of structures stay
entirely underwater either due to intentional installation to remain
submerged continuously, or temporarily during tides or specific sea
conditions. The placement of these structures renders remote sensing via
SAR impractical, as electromagnetic waves interact with the water

Fig. 5. Confusion matrices for the two models. The vertical axis represents the actual label of the image, and the horizontal axis represents the label predicted by
the model.

Table 4
Statistics for each of the combinations in which models were trained. The areas
were grouped in pairs in each run.

Train areas Validation
areas

Accuracy Sensitivity Specificity

Ireland,
Scotland

France, Galicia 34.2 % 100.0 % 0.0 %

Galicia,
Scotland

France, Ireland 53.3 % 0.0 % 100.0 %

Galicia,
Ireland

France,
Scotland

33.3 % 0.0 % 100.0 %

France,
Scotland

Galicia,
Ireland

39.8 % 95.0 % 10.0 %

France,
Ireland

Galicia,
Scotland

58.7 % 0.0 % 100.0 %

France,
Galicia

Ireland,
Scotland

26.9 % 0.0 % 100.0 %

Mean and SD: 41% ± 12.4
%

32.5% ±

50.4 %
68.3% ±

44.9 %

Fig. 6. UMAP visualization of the embeddings of the trained neural network. A
pie chart displaying the relative abundance of each area.
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surface and do not penetrate deeply enough (i.e. a few millimeters) to
detect these submerged structures.

Our tests with Sentinel-1C-band data revealed that these specific
structures are challenging to discriminate from sea clutter, regardless of
the VH or VV channels used. Detection strongly relies on favorable sea
conditions as well as the angle formed by the aquaculture compound to
the satellite track (Murata et al., 2023). Transitioning to a higher reso-
lution mode, such as the Single Look Complex (SLC) Wave Mode
(2.0x4.8 m, in range and azimuth, respectively), or even leveraging very
high-resolution capabilities such as those offered by the X-band Capella
Space satellite constellation (Stringham et al., 2019) with 0.6x0.63 m
resolution, could potentially overcome the limitations associated with
these particular marine structures. A small-scale experiment using these
high-resolution commercial satellites, confirmed successful detection.
However, due to our commitment to open and free data accessibility, we
opted not to pursue this approach. Furthermore, these commercial so-
lutions lack the temporal and spatial coverage provided by Sentinel-1
satellites. Nonetheless, the methodology presented can be feasibly
applied to proprietary data.

Regarding the different model architectures used, ResNet18 and ViT
achieved better results than ResNet34. The originally proposed smallest
ViT architecture (Dosovitskiy et al., 2021) is more complex (i.e. it has
more trainable parameters) than the deepest ResNet (even deeper than

the one used here), thus, making it more challenging to use this archi-
tecture in cases with small datasets. The large amount of data and
computational resources needed to train one of those ViTs, encouraged
the development of lighter versions of this architecture (Gani et al.,
2022; Tan, 2024). Given that the ResNet34 was too complex for use, we
chose one of these implementations of ViT because of the relative
simplicity. In our case, both trained models produced satisfactory re-
sults, with a mean F1 score of 0.89 for the ResNet18 and 0.83 for the ViT.
The ResNet18, due to its bigger number of parameters, required a longer
training period in terms of both epochs and training time to reach
convergence but still was selected as the final model because of its
slightly better results. Further work should be conducted with these
novel and simplified ViT architectures to better exploit their potential.

Pre-trained models are frequently favored due to their shorter
training times and often superior performance compared to non-pre-
trained models. Typically, this technique is applied when images from
both (pre-training and re-training) datasets belong to the same domain,
but this assumption does not always hold true. Biomedical (Kieffer et al.,
2017; Shallu & Mehra, 2018; Tajbakhsh et al., 2016) and agricultural
(Ihsan Aquil & Wan Ishak, 2021; Sahu et al., 2020) imaging are two
domains where models pre-trained with general datasets exhibit better
performance than their non-pre-trained counterparts. Satellite imagery,
encompassing both optical and non-optical spectrum data, is no

Fig. 7. Map of the Rías Baixas (Galicia, Spain) area containing ground truth data on aquaculture compound locations (dark green polygons). Red areas are areas
detected with iDPolRAD and clustered, marked as possible aquaculture compounds. Light green points are the areas where the final model predicted that there is
actual aquaculture activity.
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exception, with applications reporting successful outcomes (Gonzales &
Sakla, 2019; Zou& Zhong, 2018). However, in this specific case, the pre-
trained models demonstrated poor performance.

Several factors may contribute to this outcome, but a primary reason
could be the disparity between the images used for pre-training, which
were RGB images captured in the visible spectrum, and our images
composed of values dependent on the interaction of electromagnetic
waves with the target in the microwave regime (Ulaby, 1982; Ulaby
et al., 1981). The variability in cage structure is also partially respon-
sible for the model’s difficulty in generalizing. Even when the locations
of aquaculture farms are known, processing the area and cropping the
images to generate training data for the model is essential. This involves
identifying the aquaculture farm, distinguishing it from possible noise,
and manually cropping the area. Despite being a time-consuming pro-
cess, dedicating more time to manual data collection could likely
enhance the model’s generalization power. The balance between time
spent and results achieved is deemed satisfactory.

Despite the generalization limitations inherent in this study, to the
best of our knowledge, this marks the first instance of automatically
detecting and classifying large above-water aquaculture compounds at
the macroscale using only SAR data. Prominent studies by Ottinger
et al., (2017) and Kurekin et al., (2022) achieved accuracies of 83 % and
72 %, respectively, yet they rely on optical images in a supplementary
manner and have been tested in smaller regions. While some proof of
concept for detection based solely on SAR data exists (Ballester-Berman
et al., 2018; Marino et al., 2019), these previous studies primarily
focused on assessing whether the structures could be detected. However,
they did not delve into the classification aspect to distinguish aquacul-
ture sites from noise and other structures or accomplish the full mapping
of entire areas with spatial ground truth verification.

Given that the distribution of aquaculture activity is not freely and
readily available (Fernandes-Salvador et al., 2021) such information
becomes imperative to advance beyond the current state-of-the-art in
scientific and management research, including identifying pressures and
spatial planning (Coccoli et al., 2018). While our results are cost-
effective, promising, and potentially useful, they are only estimations
based on remote sensing data and cannot replace proper monitoring by
relevant institutions. As previously mentioned, data from satellites with
better resolution could improve the results even more. Still, regular
updates of the data and its availability will always be more accurate and
allow for better management of marine resources.

5. Conclusions

The Copernicus program provides an excellent opportunity to collect
data from the earth’s surface in a relatively short period. This study
proposes the integration of the data collected by the Sentinel-1 satellites
in a pipeline that uses artificial neural networks to automatically iden-
tify aquaculture zones in selected regions. The findings of this study
were as follows:

Merging data from the same areas but captured during different
dates represents an effective approach for noise reduction and dis-
carding moving objects in each image. In this study, 6 weeks’ worth
of data has shown the best results for the initial detection, but this
can change depending on the time the satellite takes to revisit the
area.
The iDPolRAD algorithm, initially developed for iceberg detection, is
an efficient method to detect aquaculture compounds in SAR images.
Although it also captures some noise, it can be easily discarded in
consequent steps.
Satisfactory results are achieved in differentiating aquaculture from
noise (see Table III for detailed scores) in the areas where the model
has been trained. The limited number of available training images
and the variability in types of aquaculture sites may be responsible
for the lack of generalization capabilities. Also, we plan to further

investigate the use of smaller ViT architectures with databases like
ours.
Sentinel-1C-band data showed that some specific structures are
difficult to distinguish from the noise caused by the sea. The detec-
tion depends on favorable sea conditions and the angle between the
aquaculture compound and the satellite track. Switching to data with
higher resolution could potentially address these limitations.
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