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ABSTRACT KEYWORDS
Fisheries science aims to understand and manage marine natural resources. It relies on Marine science; monitoring;
resource-intensive sampling and data analysis. Within this context, the emergence of machine management

learning (ML) systems holds significant promise for understanding disparate components of
these marine ecosystems and gaining a greater understanding of their dynamics. The goal of
this paper is to present a review of ML applications in fisheries science. It highlights both
their advantages over conventional approaches and their drawbacks, particularly in terms of
operationality and possible robustness issues. This review is organized from small to large
scales. It begins with genomics and subsequently expands to individuals (catch items),
aggregations of different species in situ, on-board processing, stock/populations assessment
and dynamics, spatial mapping, fishing-related organizational units, and finally ecosystem
dynamics. Each field has its own set of challenges, such as pre-processing steps, the quantity
and quality of training data, the necessity of appropriate model validation, and knowing
where ML algorithms are more limited, and we discuss some of these discipline-specific
challenges. The scope of discussion of applied methods ranges from conventional statistical
methods to data-specific approaches that use a higher level of semantics. The paper concludes
with the potential implications of ML applications on management decisions and a summary
of the benefits and challenges of using these techniques in fisheries.

structures, use of acoustic data in fish stock assess-
ment, analysis of environmental conditions and sam-
pling for other biological parameters (e.g., to derive
length-weight relationships). Meanwhile, fisheries
management is moving toward more holistic

1. Introduction

Fisheries science needs extensive amounts of data to
monitor and manage marine natural resources that
provide ecological, social, and economic benefits. Data

collection and data processing are among the most
labor-intensive and costly aspects of fisheries science
(Dennis et al. 2015), leading, for example, to the use
of vessels of opportunity (Uriondo et al. 2024), reduc-
tions in fishery-independent surveys (DeFilippo et al.
2023), and transitions from human observers to elec-
tronic monitoring (van Helmond et al. 2020).
Resource-intensive and critical data tasks include the
aging of fish using otoliths/statoliths, gonad analysis,
egg counting and identification, recording of catches
at sea, analysis of vessel location data, video and
image processing, genetic analysis of population

ecosystem-based approaches that require consideration
of all human activities, including the impacts of activ-
ities on non-target species and habitats (Pedreschi
et al. 2019; Link and Marshak 2022).

Rapid technological developments have enabled
extensive amounts of data to be collected through
innovative and affordable sensor technology, while
data storage capacity has become less expensive and
computational power has expanded. Processing and
analyzing these vast amounts of data presents a bot-
tleneck requiring new and automated workflows
(Malde et al. 2020; Rubbens et al. 2023). The upsurge
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of machine learning (ML) methods carries a promise
of automating cumbersome steps in the analysis of
fisheries data. Setting up ML systems and automated
workflows requires substantial initial investment but
can considerably alleviate resource limitations in the
long run (Irigoien et al. 2008; Taconet et al. 2019),
improve consistency and address the increasingly com-
plex ecological processes considered in management
decisions (Fernandes-Salvador et al 2022).

ML refers to mathematical models that can perform
a specific task without explicit instructions. ML tasks
can be broadly divided into unsupervised, supervised,
and reinforcement learning (Figure 1). Unsupervised
learning focuses on finding patterns in unlabeled
input data (e.g., finding clusters of similar data),

Figure 1. Schematic showing the three divisions of Machine
Learning (ML): Unsupervised Learning - finding patterns in
unlabeled data aka clustering, Supervised Learning - finding a
mapping of the input to a labeled output, e.g., discriminating
between two categories and Reinforced Learning — learning a
strategy via interaction with an environment and a reward/
penalty system.
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whereas supervised learning requires labeled input
data which is mapped to output data (e.g., identifying
species from photographs, having seen other photo-
graphs with the correct identification). In reinforce-
ment learning, an agent can learn a strategy via
feedback mechanisms, without having received explicit
instructions (e.g., a robot finding its way through a
maze). Deep learning (DL) is a subset of ML that
utilizes artificial neural networks (ANN) with a high
number of layers, allowing them to learn complex
patterns from large unstructured or newly added data.
DL is particularly popular in the form of convolu-
tional neural networks (CNN), which can learn spatial
and temporal dependencies through a series of
context-dependent filters (convolution). Shallow learn-
ing, as opposed to deep learning, is used to refer to
other ML approaches not able to utilize the higher
order of semantics that DL can use.

This article provides a review of existing ML appli-
cations in fisheries science to enhance the use of ML
methods by providing discipline-specific examples
within the field. Challenges and opportunities posed
by ML in the context of the peculiarities of fisheries
science problems and data are also discussed. Instead
of organizing the paper by ML methodologies, it is
organized around fisheries science sub-disciplines
where ML has been used or has the potential to be
used. This allows readers to explore examples of appli-
cations within topical areas of their interest. Therefore,
this review is organized into two broad categories
(Figure 2), orientating on the core realms of fisheries
sciences: “Analysis of Samples” (section 2), which deals
with the collection, processing and categorization of
samples collected on research and fishing vessels; and
“Analysis of Dynamics” (section 3), which compiles
these data to infer dynamics on the state of the stock,
metier/fleet, and ecosystem to inform management
(Lackey 2005; Hart and Reynolds 2008). Within these

Analysis of Samples

Analysis of Dynamics

v

Fishing
organisational
units: * Surveilance of fishing activity « Classify
(electronic vessel monitoring) Metier/ Fleet Ecosystem —
« Catch composition behaviour

Vessel k Metier/Fleet |

. + Non-target
Genomics ( Individuals ( A F'sl:; ( Stock species
Resource ssemblages * Habitat

isati * Predator-pre;
org_amsatlonal + Genetic + Measurementson * In-situ « Temporal & spatial distr. relationsh’i)psy
units: species ID the individual or Identification & « Stock attributes e.g. age « Risk analysis
+ Stock ID parts of it e.g. Counting via composition, maturity,
+ eDNA otholiths, length acoustics or video stock-recruitment
Management

Figure 2. Graphical summary of the topics covered in this review organized at different hierarchical levels from small to large

revolving around important realms in fisheries science.
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broader categories, this work looks at different scales
where ML is applied from small to large. The analysis
of samples section focuses on genomic analysis, bio-
metric data of individual fish, in-situ monitoring of
fish shoals and onboard vessel monitoring. Meanwhile,
the analysis of the dynamics section ranges from
inferring dynamics at the stock level, and character-
ization of different fishing styles (metiers) and fleets
up to the ecosystem level. The article ends with the
fisheries management implications of ML applications,
as well as the potential pitfalls and future directions.
Table 1 gives an overview of the studies that are dis-
cussed in this article.

2. Analysis of fish samples
2.1. Genomics

Genomics technology is used in numerous fisheries
applications (Mohanty et al. 2019) such as species
identification for seafood authentication and trace-
ability (Kusche and Hanel 2021), post-harvest value
addition, monitoring invasive species, and improved
fisheries management (Goodwin et al. 2017; Hansen
et al. 2018; Martinsohn et al. 2019). Fisheries science
also utilizes genetics to answer questions of population
genetics for fisheries management advice (Valenzuela-
Quifonez 2016), e.g., identifying the degree of con-
nectivity, migration patterns and stock mixing in time
and space, evolution due to fishing pressure acting as
a selective force, or seascape genetics which link envi-
ronmental factors to genetic differences found across
ocean regions (Galindo et al. 2006; Selkoe et al. 2016).
The field quickly transformed from studying a few
neutral markers to the analysis of single nucleotide
polymorphisms (SNP) across the whole genome
(Valenzuela-Quifionez 2016). Targeting a larger num-
ber of loci across the whole genome allows for greater
sensitivity in detecting genetic differences between
populations (Luikart et al. 2003). Identifying markers
with high discriminatory power is particularly needed
in situations where management units do not match
the natural population boundaries (Hemmer-Hansen
et al. 2019; Weist et al. 2019; Wenne et al. 2020).
Identifying a small set of discriminative markers is
difficult when dealing with 1000 to millions of SNP,
however (Kavakiotis et al. 2015). A common approach
with large genomic datasets is to first use dimension-
ality reduction such as principal component analysis
(PCA) (Chen et al. 2018). Correlations and
higher-order interactions among genes pose additional
challenges for identifying a small set of unique genetic
markers, so several studies utilize Random Forest

modeling (RF) (Chen and Ishwaran 2012; Brieuc et al.
2018), as it can deal with multicollinearity, interac-
tions, a large number of features, and it includes
variable-importance metrics. For example, Sylvester
et al. (2018) used RF for the selection of SNP for
population assignment in Atlantic salmon and Alaskan
Chinook salmon. Similarly, Sinclair-Waters et al.
(2018) identified markers via regularized RF for esti-
mating the proportion of Gilbert Bay cod stemming
from a distinct population in a marine protected area
(MPA) in fisheries catches. In Sebastes mentella
(beaked redfish), a screening procedure of SNP via
RF identified 21 loci to discriminate between different
ecotypes of the species (Saha et al. 2021). The
R-package “assignPOP” implements several common
ML classifiers which incorporate both genomic and
non-genomic information into population assignment
(Chen et al. 2018).

A further revolution in genomics emerged through
simultaneous sequencing of the DNA of different spe-
cies within environmental samples, termed metage-
nomics or environmental DNA analysis (eDNA). This
analysis often detects species’ presence in aquatic
environments with higher sensitivity than previous
sampling methods (Bergman et al. 2016; Thomsen
et al. 2016). Recent studies have also found a positive
correlation between eDNA concentration in water and
species biomass useful for fisheries management
(Lacoursiére-Roussel et al. 2016; Yamamoto et al.
2016; Rourke et al. 2022). The comparison of DNA
sequences in the sample with those of a reference
database is a critical step in metabarcoding, where
several traditional bioinformatics sequence
alignment-based classifiers (Bokulich et al. 2018;
Mathon et al. 2021) and ML classifiers such as neural
networks (Nugent and Adamowicz 2020) or naive
Bayes (Bokulich et al. 2018) can be deployed to find
the correct taxon or the nearest taxonomic lineage
(Bokulich et al. 2018). Speed and accuracy are key
requirements for such algorithms (Bokulich et al.
2018; Flick et al. 2021). The first attempts of deploy-
ing deep learning to a taxonomic assignment of short
eDNA sequences for tropical freshwater fish were
promising with similar accuracy but 150 times faster
(Fluck et al. 2021). ML also offers the opportunity to
avoid the work of taxonomic identification by collect-
ing eDNA and inferring the species composition from
that data. This allows inferring the environmental
status and the effects of a certain stressor level on
community composition (Cordier et al. 2017, 2018,
2019). This approach allows including taxa which are
difficult to identify and are not regularly used in the
derivation of biological indices. Although this
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Table 1. Overview of studies mentioned in the main text utilizing ML in the different fields.

Section

Objective

Data

Algorithm

Study

Analysis Genomics

Samples

Biometrics

Fish Assemblages

Electronic
monitoring

Identification of genetic
markers

Taxonomic alignment in
metabarcoding

eDNA for biomonitoring

On-board Fish
identification &
counting

Fish length estimation

Age reading from otoliths

In-situ fish identification

In-situ fish identification
and abundance
estimation

In-situ fish identification
In-trawl catch
identification

Fish identification and
counting in a
commercial
environment

Identification of catch/
bycatch events

Sequencing output

Sequencing output

Sequencing output

Images

Images

Images

Hydroacoustic data
Hydroacoustic data

Images

Images

Images

Images

RF

ANN

Naive Bayes
CNN

RF/ SOM
CNN

CNN

CNN

SVM/ANN
SVM

CNN
Transformers

SVM/MLP/PNN
RF/ MLP/ Nearest

Neighbour/ Decision

Trees
RF
SVM/CNN
CNN

CNN

CNN

Chen and Ishwaran, (2012)
Brieuc et al. (2018)

Sylvester et al. (2018)
Sinclair-Waters et al. (2018)
Saha et al. (2021)

Nugent and Adamowicz (2020)
Bokulich et al. (2018)

Fliick et al. (2021)

Cordier et al. (2017, 2018, 2019)
Park et al. (2023)

French et al. (2015)

French et al. (2020)

Monkman et al. (2019)
Garcia et al. (2020)
Alvarez-Ellacuria et al. (2020)
Yu et al. (2020)

Fablet and Le Josse (2005)
Bermejo et al. (2007)
Moen et al. (2018)

Moore et al. (2019)
Ordofez et al. (2020)
Politikos et al. (2021a)
Ordofiez et al. (2022)
Martinsen et al. (2022)
Moen et al. (2023)
Bojesen et al. (2024)
Cayetano et al. (2024)
Sigurdardéttir et al. (2023)
Robotham et al. (2010)
Uranga et al. (2017)
Baidai et al., 2020)

Villon et al. (2016)

Ditria et al. (2020)
Garcia et al. (2020)
Allken et al. (2021)
Sokolova et al., 2021b, 2021a)
Yu et al. (2022)

French et al. (2015,2020)
Lu et al. (2020)

Tseng and Kuo, (2020)
Qiao et al. (2021)

van Essen et al. (2021)
Lekunberri et al. (2022)
Ovalle et al. (2022)
Khokher et al. (2022)
Sokolova et al. (2023)
Pierre (2018)

Qiao et al. (2021)
Khokher et al. (2022)
Acharya et al. (2024)
Saqib et al. (2024)

(Continued)
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Table 1. Continued.

Section

Objective

Data

Algorithm

Study

Analysis
Dynamics

Stock/Population

Metier/Fleet

Ecosystem

Management

Inferring life-history
parameters

Stock-recruitment
modeling

Species-distribution
modeling

Enhance Process-based
population/stock
assessment models

Identification of métiers
and vessel behavior

Improve fishing effort
estimates

Spatial mapping of fishing
grounds

Route optimization

Inferring illegal activity

Infer human right abuse

Identify risk hotspots for
bycatch

Spatial distribution maps
and risk assessment

Identify ecosystem
dynamics, risk
assessment and testing
of “what if” scenarios

Scenario analysis in the
context of marine
spatial planning (MPA,
windparks, ...)

MSE-type simulations via
agent-based modeling

Testing of spatial
management strategies

Dynamic ocean
management via
Spatial distribution
models

Tabular data of life
history parameters

Stock assessment model
output/ Survey data

Spatial/ Spatio-temporal
data

Tabular data of temporal

dynamics

AIS/ VMS data

AIS/ VMS data

AIS/ VMS data

Spatial data

AlIS/ VMS data + auxiliary
data

AlS/ VMS data + auxiliary
data

AIS/ VMS data + auxiliary
data

Spatial/ Spatio-temporal
data

Various data types
(quantitative/
qualitative)

Various data types
(quantitative/
qualitative)

Various data types

Various data types

Spatio-temporal data

Factor Analysis/Major
axis regression

ANN

BRT

Decision Trees/RF/BRT

ANN

Naive Bayes

RF

Various (BRT, RF, BART,
ANN, MaxEnt, ....)

Physics-informed ANN

BRT

ANN

CNN

CNN

Genetic algorithm

CNN

CNN/RF/SVM

CNN

Naive Bayes/MLP/RF/
SVM

Various (BRT, RF, ANN,
MaxEnt, ....)

Bayesian Network

Spatial Bayesian

Network

Shallow RL

Deep RL

Shallow RL

BRT

Thorson et al. (2017)

Benzer and Benzer (2016, 2019)

Morais and Bellwood (2018)
Liu et al. (2020)

Chen and Ware (1999)
Chen et al. (2000)

Huse and Ottersen (2003)
Megrey et al. (2005)
Fernandes et al. (2010)
Smolinski, 2019

Kihn et al. (2021)
Muhling et al. (2020)
Palacios-Abrantes et al. (2020)
Stock et al. 2020

Costa et al. (2023)
Rackauckas et al. (2020)
Karniadakis et al. (2021)
Lidtke and Pierce (2023)
Joo et al. (2011)

Russo et al. (2011)
Kroodsma et al. (2018)

Kroodsma et al. (2018)
Taconet et al. (2019)
Granado et al. (2021, 2024)
Belhabib et al. (2020)

Park et al. (2020)

Seto et al. (2022, 2023)
McDonald et al. (2021a)

Queiroz et al. (2019, 2021)
Goikoetxea et al. (2024)

Brownscombe et al. (2020)
Griffin et al. (2022)
Politikos et al. (2021b)
Friedland et al. (2021))
Cheung et al. (2021)
Breen et al. (2017)
Cleasby et al. (2022)
Trifonova et al. (2017, 2019,
2021)
Uusitalo et al. (2018)
Maldonado et al. (2019)
Tucker and Duplisea (2012)
Coccoli et al. (2018)
Pinarbasi et al. (2019)
Maldonado et al. (2022)

Dreyfus-Leon (1999),

Dreyfus-Leon and Kleiber (2001)

Dreyfus-Leon and Gaertner
(2006)

Russell and Zimdars (2003)

Bouton et al. (2019)

Bailey et al. (2019)

Hazen et al. (2018)
Breece et al. (2021)
Welch et al. (2020)

ANN: artificial neural network; BART: Bayesian additive regression trees; BRT: boosted regression trees; CNN: convolutional neural network; MLP: multilayer
perceptron; PNN: probabilistic neural network; RL: reinforcement learning; RF: random forest; SVM: support vector machines.

ML-based approach for biomonitoring (Cordier et al.
2021) is not yet frequently applied, it can further
facilitate eDNA-based monitoring of fish communities
in response to fishing pressure, e.g., in the context of
MPA (Bani et al. 2020; Boulanger et al. 2021; Gold

et al. 2021), which currently rely on taxonomic assign-
ment. Most recently Park et al. (2023) investigated
ML algorithms for taxonomic classification of marine
metagenomes. They applied DL and a novel Residual
Network architecture that leverages natural language



processing and CNN architectures to map input
sequence data (k-mers) to taxonomic groups without
reliance on a curated taxonomic tree. The results sug-
gested that high genome coverage and rectification of
class imbalance (i.e., highly uneven number of obser-
vations in the different classes) are prerequisites for
a well-trained model and, therefore, should be a major
consideration in future ML work.

2.2. Biometrics

Collection and analysis of fish biometric data can be
divided into two categories: (1) species identification
and collection of data on morphological features such
as body measurements, and (2) the inference of indi-
rect features such as age and growth rates. The mea-
surement of external features can be completed on a
vessel, at the harbor or from previously collated sam-
ples in a lab setting, often involving multiple staff
members identifying, counting, weighing, and mea-
suring the specimens whilst noting the information
before uploading the data into a suitable database.
This is often facilitated by technology such as elec-
tronic measuring boards and calipers with some form
of automated data transfer. To automate the data col-
lection process, the individual fish in a sample would
need to be recognized and identified successfully, a
task referred to as “sorting,“ before the measurement
was taken.

The process of sorting is particularly challenging
in a commercial environment, in comparison to a
scientific survey, as conveyor belts are often used to
move samples. As a result, sample images often
include other objects and artifacts. The work done by
Strachan (1993) represents some of the early attempts
to automate the process of sorting using descriptors.
Later, White et al. (2006) utilized an image processing
algorithm to identify and measure fish on a conveyor
belt. Their approaches rely on traditional image pro-
cessing techniques and require a clear image of the
individual fish to be identified. The quickly developing
DL techniques, particularly region-based CNN
(R-CNN) methods such as Fast R-CNN (Girshick
2015), Faster R-CNN (Ren et al. 2016), and Mask
R-CNN (He et al. 2017) can speed up the recording
of morphological features. As a notable example,
Monkman et al. (2019) proposed standard regional
CNN implementation to perform the task of fish
detection and length estimation from raw input
images. The approach has the advantage of being
robust to horizontal flipping and downsampling, but
falling short when the image orientation is subjected
to a significant degree of rotation. French et al. (2015)

REVIEWS IN FISHERIES SCIENCE & AQUACULTURE . 339

utilized CNN to successfully isolate and count dis-
carded fish in footage from an operational trawler,
becoming one of the earliest studies that utilized a
CNN-based approach on a low-resolution setting and
without requiring well-defined image capture tech-
niques. More recently, French et al. (2020) trained a
multi-class Mask R-CNN model to segment objects
of a single fish class and identify species. An advan-
tage of the Mask R-CNN-based approach is that it
performs both the detection and segmentation tasks
simultaneously, removing the need to isolate the fish
from background objects. Several related studies
(Alvarez-Ellacuria et al. 2020; Garcia et al. 2020; Yu
et al. 2020) applied Mask R-CNN to improve fish
detection performed as part of the biometric analysis.

The second category of studies involving biometric
data aims to infer certain indirect characteristics such
as age and growth rate. The age of fish is determined
by counting the yearly ring patterns in the otoliths
(Choat and Axe 1996). Though the collection of oto-
liths cannot be improved through ML, processing and
counting the rings could be significantly expedited
with successful image analysis. Early attempts of ML
to automate age estimation formulated the problem
as a classification task, with Fablet and Le Josse (2005)
using both support vector machines (SVM) and arti-
ficial neural networks to classify plaice (Pleuronectes
platessa) otolith images into 5 distinct age groups.
Bermejo et al. (2007) also attempted to automate aging
otoliths using SVM. In this approach, both PCA and
hand-crafted morphological feature extraction were
applied to a database of images focusing primarily on
the shape of otoliths. The study relied heavily on the
assumption that the outer otolith shape changes dis-
tinctively in relation to the fish age. This can be prob-
lematic when considering fish species such as eel that
exhibit high otolith shape variability among individ-
uals of the same age (Hamrin and Doering-Arjes
2002). Formulating the problem as a regression task
(no predefined discrete set of ages), Moen et al. (2018)
and Moore et al. (2019) adapted pre-trained CNN
designed for object recognition to estimate the age of
fish from otolith images. In Moen et al. (2018), the
image dataset included Greenland halibut (Reinhardtius
hippoglossoides) with ages up to 26 years. Age estimates
were correct in 29% of cases and an additional 38%
of cases had an error of only one year. A similar
approach (Moore et al. 2019) used New Zealand snap-
per (Chrysophrys auratus) and hoki (Macruronus
novaezelandiae), with ages up to 27 and 18, respec-
tively, obtaining an accuracy of 47% with an addi-
tional 35% having only an error of one year.
One notable advantage of this method was that the
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CNN in these cases were previously designed and
then adapted to the task, removing the need to design
a CNN from scratch - an advantage for fisheries sci-
entists without a computer vision background. More
recently, a multi-task learning approach was developed
by Politikos et al. (2021a) where a CNN was con-
structed to predict both fish age and length from
otolith images of red mullet (Mullus barbatus).
Applying a trained algorithm from one institution/
working group to otolith images acquired at a differ-
ent place with the goal of inter-institutional standard-
ization is still considered an issue. For this reason,
Ordoiiez et al. (2022) modified a CNN originally
trained on Norwegian Greenland halibut otolith
images to classify the ages of Greenland halibut oto-
liths acquired in Iceland via domain adaptation, stress-
ing the fact that the domain shift cannot be adequately
handled by simple preprocessing alone. Apart from
domain adaptation, there are also recent improvements
in other implementation aspects such as the use of
ensemble learning (Moen et al. 2023) and transform-
ers (Sigurdardottir et al. 2023) as well as several works
addressing the lack of explainability of the DL-based
approaches (Ordofez et al. 2020; Martinsen et al.
2022; Bojesen et al. 2024; Cayetano et al. 2024).

1.3. In situ fish aggregations

Dynamic (e.g., sea surface temperature) and static
(e.g., depth, latitude, longitude, seafloor habitat) char-
acteristics of a particular location can drive spatial
distributions of fish in a variety of ways (e.g., seasonal
spawning events) among different species. Trying to
quantify and assess species and the conditions they
live in with minimal disturbance has become more
feasible with technologies such as hydroacoustic,
underwater visual monitoring and machine learning-
based data analysis.

Identifying different species in hydroacoustic data
started by utilizing standard statistical methods
(LeFeuvre et al. 2000; Lawson et al. 2001), but has
transformed toward the use of ML. For example,
Robotham et al. (2010) identified schools of anchovy,
jack mackerel and sardine using SVM, multi-layered
perceptron (MLP), and probabilistic neural networks
(PNN), with better performance from the SVM and
MLP techniques. Image processing techniques and ML
were also used to automate the analysis of commercial
medium-range sonar on fishing vessels to detect the
presence/absence of bluefin tuna (Tunnus thynnus) in
the Bay of Biscay (Uranga et al. 2017). More recently,
ML methods were applied to acoustic data gathered
by a commercial echosounder buoy to identify tropical

tuna aggregations (Baidai et al. 2020). Meanwhile,
hydroacoustic data analysis has been streamlined
through the development of CNN to aid in the task
of labeling data (Sarr et al. 2020). Underwater in situ
species identification can be carried out—in a
labor-intensive and expensive manner—by divers, with
minimal impact on sensitive communities. The use
of underwater HD videos and still images are
cost-efficient alternatives, but they generate large data-
sets (>100 TBs) that need to be processed and clas-
sified afterwards. Applying two supervised ML
methods (SVM and CNN) to automatically detect and
recognize coral reef fishes in underwater HD, Villon
et al. (2016) found that DL CNN were more efficient
but were also more likely to misclassify background
habitats than SVM.

An increasingly important noninvasive method for
monitoring fish populations of both pelagic (Rosen
and Holst 2013) and demersal (DeCelles et al. 2017)
species is attaching underwater cameras to fishing
gear. This approach allows fish monitoring without
catching the target species (the net is equipped with
an open codend), therefore avoiding unnecessary mor-
tality. Several studies demonstrate various automated
video processing approaches, primarily based on CNN
applications (Ditria et al. 2020; Allken et al. 2021; Yu
et al. 2022), which consequently lead to reduced
demand for manual identification and count of species
where the processing of one hour of video can require
10h of human labor (Rosen and Holst 2013; DeCelles
et al. 2017). The use of underwater cameras in regular
commercial fishing gear may serve as a decision-support
tool for the fishers. By implementing such systems in
fishing nets—particularly trawls, which are the type
of gear typically used in mixed-species fisheries—fish-
ers will be able to improve selectivity (i.e., catching
target species and avoiding unwanted species).

Trawling typically lasts for several hours, resulting
in significant amounts of data, which are often com-
plicated to analyze and infeasible to analyze manually.
Thus, the automation of video data analysis is a crit-
ical focus in fisheries (Garcia et al. 2020; Sokolova
et al. 2021a, 2021b). The promise of automated pro-
cessing pipelines lies in the field of deep learning,
specifically CNN, and in traditional computer vision
approaches that require feature engineering (Sokolova
et al. 2021a). Meanwhile, particular challenges for
catch monitoring in demersal trawl video are caused
by a lack of light, poor visibility caused by suspended
sediments, and mixed species catch composition (Krag
et al. 2009; DeCelles et al. 2017). Nonetheless, optical
devices can facilitate species identification if quality
images can be obtained. Sokolova et al. (2021a, 2022)



developed an in-trawl image acquisition system for
Nephrops norvegicus trawl fisheries applied during
demersal trawling. The system reduces sediment in
the camera field of view and assists automated pro-
cessing of the target species by means of contrast
enhancement.

2.4. Electronic monitoring

Electronic monitoring (EM) is an evolving tool uti-
lized by managers and fisheries scientists to remotely
monitor the catches and bycatch onboard commercial
vessels. EM is typically associated with an extensive
collection of video recordings (1-2 TB per month,
EPFA 2019; Roman et al. 2020) and manually review-
ing video footage is expensive and time-consuming,
which fostered recent developments in automated
video processing via ML. Many studies concentrate
on species separation, identification, and counting of
catches while fish are on a conveyor belt. The working
environment aboard a fishing vessel provides unique
challenges that can affect classification accuracy
including difficult camera mounting locations, highly
variable illumination (e.g., due to weather or
below-deck lighting conditions), or fouling of the
camera lens by dirt or water (Tseng and Kuo 2020;
Lekunberri et al. 2022). A strategy to overcome the
latter would be to train an algorithm to detect dirt
and water droplets on the lens and give an audible
cue for the crew to clean the camera as necessary
(Lekunberri et al. 2022). EM systems often deploy
wide-angle fisheye lenses mounted in corners to mon-
itor the largest spaces possible, ideal for man-made
reviewing of video footage, but leading to distortion
of objects in the image. For automated algorithms, a
calibration process like placing a checkerboard pattern
with known physical properties on a conveyor belt
(French et al. 2020) can transform video images to
their correct physical dimensions. Lekunberri et al.
(2022) corrected a sub-optimal camera position above
a conveyor belt via a simple transformation to rectify
the skewed angle to obtain a zenith-angle position.
This is particularly important if length measurements
of individuals are estimated automatically via pixels
to real length (in cm or mm) proxy, although this is
yet only possible in a highly controlled environment
with almost no overlap between fish individuals
(Ovalle et al. 2022). Alternatively, the lens bias can
be accounted for in automated length estimation.
Training an algorithm on stereo vision cameras (two
neighboring cameras with overlapping fields of view),
which are frequently used in noninvasive underwater
monitoring of fish (Boldt et al. 2018; Munoz-Benavent
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et al. 2018; Baker et al. 2021), might be an additional
way to improve length measurements as well as
enabling algorithms to remove artifacts. In addition
to automated length estimation, there is a recent study
devoted to weight estimation. Sokolova et al. (2023)
present an end-to-end approach to predict the weight
of an individual in parallel with species prediction
and fish location in the 2D RGB image. The method
is based on a YOLOv5 CNN with an additional output
for weight prediction and is developed for discard
registration onboard Dutch beam trawlers.

Current challenges are strongly associated with the
respective fishery and the deployed gear types. A typ-
ical high-seas longline fishery targeting tuna or sword-
fish only catches a limited number of individuals at
a time (Lu et al. 2020; Tseng and Kuo 2020; Qiao
et al. 2021). Since few fish are handled on deck simul-
taneously, counting can be achieved with time thresh-
olding (minimum number of subsequent images with
a fish identified to be counted) and distance thresh-
olding (individuals with a certain distance of their
centroids are counted as separate). Here, the move-
ment of the crew covering the field of view, highly
variable illumination due to day-night cycles and
weather, as well as miscellaneous objects on deck pose
a challenge for the algorithms. Applying a ResNEXt
with a cascade RCNN in a Patagonian toothfish long-
line fishery below deck, Khokher et al. (2022) found
that camera positioning, image resolution, light con-
ditions, and limited training data complicated the
detection of some bycatch species, whereas the target
species and those with a unique appearance could be
identified with greater success.

Aboard mixed trawlers, automated computer vision
for fish identification and enumeration is additionally
complicated by the large variety of target and bycatch
species. Thus, a successful segmentation of relatively
similar individuals on top of a conveyor belt is a
crucial task. A first attempt within the complex com-
mercial environment was described by French et al.
(2015) who proposed foreground segmentation of
individuals in discards via the N*—Fields algorithm
(Ganin and Lempitsky 2014). Drawbacks include the
need to train the algorithm for each belt separately,
and the system only working with low resolution VGA
footage as the segmentation becomes unreliable with
higher resolution HD recording (French et al. 2020).
Subsequent work (French et al. 2020) deployed a
Mask-R-CNN for both object detection and segmen-
tation and a separate 50-layer ResNet for fish classi-
fication in various settings on research and commercial
vessels, experiencing difficulties in across-vessel oper-
ationalization. Ovalle et al. (2022) tested increasing
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degrees of overlap between fish on a conveyor belt
and obtained higher misclassification from a low over-
lap to a moderate overlap setting, and no reliable
estimates of fish ID and counts in a typical high
overlap situation common on commercial trawlers.
Similarly, van Essen et al. (2021) found a negative
correlation between increasing levels of occlusion
(10%-85%) and the classification performance of a
trained YOLO v3 model using video footage of discard
catches and debris from a North Sea beam trawler.
These findings are supported by Sokolova et al.
(2023), who reported that the detection performance
of discarded fish overall decreased with the increasing
occlusion levels, specifically, when the occlusion
exceeded 30%. Hoppers to reduce crowded environ-
ments have been suggested (Lekunberri et al. 2022);
however, such mechanical devices can be misused for
illegal discards (Fernandes-Salvador et al. 2022).
While automation of fish ID and counting via DL
is possible in less crowded environments, it still lacks
the necessary accuracy to be considered operational
in a highly mixed setting with frequent occlusion,
large size variation, similar looking species, and the
presence of debris. Admittedly, this is also a challeng-
ing setting for human reviewers of EM footage as
especially small fish in discards were frequently under-
estimated in various EM trials of the European mixed
fishery (van Helmond et al. 2020). Therefore, future
applications in automating the EM review process
should not only focus on optimizing algorithms but
also standardizing the working environment, e.g., via
controlling the flow of individuals on the conveyor
belt with hoppers to reduce overlap (Khokher et al.
2022; Lekunberri et al. 2022). For individual counting,
tracking fish in subsequent images is often challenged
by irregular conveyor belt movement. Tracking indi-
vidual objects in subsequent frames can be done via
a combination of correlating RGB pixels and deep
neural network features from the pooling layers of
subsequent images (French et al. 2020), applying an
intersection-over-union tracker with a correlation filter
for interpolating discontinued tracks (Khokher et al.
2022) or using a Kalman filter to track detections
between images (van Essen et al. 2021). Tracking fish
for counting provides additional challenges and is
largely reliant on the performance of the fish detector,
leading to double counts if the tracker aborts prema-
turely, ghost counts of tracked background over
missed tracks of small or rare fish, and overestimation
of abundant fish (van Essen et al. 2021). Alternatively,
the raw video frames can be used to generate
semi-linescan images, which eliminates the problem
of the same fish individuals being present in multiple

images (Sokolova et al. 2023) reducing the potential
sources of error.

Despite these advances in computer vision for spe-
cies ID and counting, fewer studies applied ML to
other important tasks in EM systems. Qiao et al.
(2021) investigated how to identify catch events in
video footage of a longline fishery using a CNN for
object detection (simultaneous occurrence of fishers
and fish in a frame) and a temporal filter for catch
event detection, comparing the performance of several
architectures including ResNet, GoogLeNet, DenseNet
and YOLO. Such approaches significantly reduced the
volume of video segments for manual reviewing, even
if no additional ML tools for ID or counting were
applied. Khokher et al. (2022) discussed the use of
ML to identify anomalies in fishers’ behavior e.g., in
handling bycatch species if the movements of crew
members were sufficiently distinct (like leaning over
the vessel to cut a line in a longline fishery). Especially
for protected species, which are removed before being
visible in the camera field of view, crew behavior
could be indicative of the occurrence of such an event
(Pierre 2018). If EM is also used to monitor compli-
ance, where the fishers’ behavior—not only the catch—
is subject to analysis, ethical issues might hinder
implementation. Deploying automated analysis of fish-
ers behavior for anomaly detection on-board can
already collide with article 1 “right to human dignity,”
article 8 “protection of personal data” and article 48
“presumption of innocence and right of defence” of
the EU Charter of Fundamental Rights and be con-
sidered a high-risk AI system (article 6(2) of the EU
AT Act 2021) if it is “intended to be used for crime
analytics regarding natural persons, allowing law
enforcement authorities to search complex [...] data
sets [...] in order to identify unknown patterns or
discover hidden relationships in the data” (EU AI Act
2021, Annex III).

3. Analysis of fish and fisheries dynamics
3.1. Stock/population level

To determine the status of fish stocks and their future
development for sustainable harvesting, data sources
from previous organizational levels (above) are aggre-
gated to derive estimates of important life cycle
characteristics, which are fed into stock assessment
models for use in management. ML approaches are
either used to derive estimates of these life-history
parameters or directly used to model/forecast stock
dynamics. Additionally, if spatially resolved data are
available, ML is used to infer the spatio-temporal



dynamics of different life stages through species-
distribution modeling (SDM).

Differences in average biological traits among spe-
cies can be summarized in a few sets of life history
parameters (e.g., growth, mortality, maturity) crucial
to distinguishing stock boundaries (Begg et al. 1999)
and estimating sustainable harvest levels (Quinn and
Deriso 1999). Some life history parameters cannot be
directly measured without considerable cost and effort,
and are often inferred from other more easily acces-
sible life history parameters (Thorson et al. 2017).
Many such life history parameters are derived from
classical statistical mechanisms, deeply embedded in
ecological/physiological theory, e.g., describing the
growth of fish via a von Bertalanffy growth function
(VBGF) or relating length to weight via a power law
(Quinn and Deriso 1999). Attempts to replace these
rather deterministic relationships with ML are limited
(Benzer and Benzer 2016, 2019), but ML can build
on mechanistic relationships (e.g., VBGF) for deriving
general patterns in life history parameters over a
broad range of species. Although not ML, the work
of Thorson et al. (2017) set the stage by relating seven
life history parameters (natural mortality, growth,
asymptotic maximum length and bodyweight, length
and age at maturity, maximum age) of 32,000 fish
species and their temperature ranges, together with
taxonomic dependencies via a combination of factor
analysis with an extension of major axis regression.
Liu et al. (2020) used tree-based learners (comparison
of decision trees, bagged decision trees, RF and
Boosted Regression Trees (BRT)) to infer natural mor-
tality from other estimates of 256 records of life-history
parameters (K, L_, t,..) for Chondrichthyes and
Osteichthyes. BRT performed better relative to the fit
of established empirical relationships, readily incor-
porating categorical taxonomical information and
allowing for non-linear relationships. In a different
example, Morais and Bellwood (2018) used BRT to
model growth rates (K,,,) of reef fishes as a function
of various traits (body size, diet, distance to reef) and
their thermal environment. The authors asserted that
this is particularly useful to assess the growth pattern
of unmeasured reef species and allow analysis of
community-level growth patterns.

Modeling the stock-recruitment relationship is
highly important for fisheries management (Houde
2008). Ecological theory provides various mechanistic
functional forms (such as Beverton-Holt, Cushing,
Ricker) to relate spawning stock biomass (SSB) to the
number of offspring recruiting to the fishery, but
environmental variability acting on various temporal
and spatial scales can largely obscure this relationship.
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The use of ML approaches was motivated by their
ability to model non-linear relationships, and flexibil-
ity in their functional form without the need to define
a relationship a priori and/or taking interactions into
account (Chen and Ware 1999; Megrey et al. 2005;
Smolinski 2019). Most of the earlier work exclusively
focused on deploying neural networks (Chen and
Ware 1999; Chen et al. 2000; Huse and Ottersen 2003;
Megrey et al. 2005). In general, there is a rather nar-
row focus on applying established methods like neural
networks, RF (Smolinski 2019; Kithn et al. 2021) and
Naive Bayes (Fernandes et al. 2010, 2015). Fernandes
et al. (2010) compared several machine learning meth-
ods (Naive Bayes, Tree augmented Naive Bayes, SVM,
MLP, and Decision trees) without any outperforming
the Naive Bayes model. As a probabilistic model with
graphical representation, Naive Bayes is appropriate
for communication to end-users, contrary to black
box approaches. Fernandes et al. (2015) combines the
benefits of Naive Bayes with kernels (usually used in
SVM) to get the advantages of Bayesian networks and
the flexibility of SVM. Looking forward, a newly
emerging field called “scientific ML” (Rackauckas et al.
2020) or “physics-informed ML’ (Karniadakis et al.
2021) generates hybrid models substituting part of a
dynamical system/mechanistic model (a set of differ-
ential equations) with a ML model. Constraining the
ML model by known mechanistic relationships allows
harnessing advantages of both worlds - the data-driven
universal approximation ability of ML and the mech-
anistic understanding and traceability that mathemat-
ical models provide. The combination allows for
improved extrapolation ability of the model under a
data-limited setting where pure ML approaches have
a hard time. Various successful applications span a
variety of disciplines ranging from climate/earth-system
science (Reichstein et al. 2019; Kashinath et al. 2021),
epidemiology (Dandekar et al. 2020) and biomedicine
(Lagergren et al. 2020; Sahli Costabal et al. 2020). For
example, Rackauckas et al. (2020) demonstrated the
approach using the Lotka-Volterra predator-prey sys-
tem from theoretical ecology. In this example, the
authors had only a short time series of known prey
birth rates and predator death rates, and they substi-
tuted the unknown degree of interactions between
predator and prey with a neural network (neural dif-
ferential equations). They replicated the unknown
dynamics and extrapolated further in time, even
though the training data did not include a full cycle
of the unfolding dynamics. Population models in fish-
eries science, ranging from relatively simple surplus
production models to fully age-structured models
could also benefit from an incorporation of ML, to
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approximate unknown hidden dynamics of hard-to-
measure biological parameters or environmental forc-
ing. An attempt in this direction was made by Liidtke
and Pierce (2023) combining a stock assessment
model with a BRT for post-hoc corrections.

The spatial distribution of species is regularly sam-
pled through research surveys and commercial catches.
Spatially resolved data can help to identify important
life history events like spawning aggregations
(Gonzalez-Irusta and Wright 2016; Miesner and Payne
2018), resolve nursery and feeding grounds relevant
to conservation and management needs (Katara et al.
2021) or infer stock/population boundaries (Palacios-
Abrantes et al. 2020). Additionally, spatially resolved
data can inform estimates of bycatch (Stock et al.
2020) or reduce the impacts of choke species via
optimization of species-specific catch ratios in mixed
species fisheries (Dolder et al. 2018). The spatial data
can be used to inform species distribution models
(SDM). The use of ML methods in SDM modeling
is widely established, which is in part attributed to a
series of papers providing a tutorial-like introduction
to the use of BRT (Elith et al. 2008) and MAXENT
(Elith et al. 2011) for SDM. The emergence of an
easy-to-use implementation of a variety of ML algo-
rithms and model ensembles in R via packages like
“BIOMOD” (Thuiller et al. 2009), “dismo” (Hijmans
et al. 2020) or “sdm” (Naimi and Araujo 2016), facil-
itated the widespread use of ML for SDM.

Some challenges in SDM are specific to the marine/
fisheries realm and are pertinent to the successful
usage of ML. Species and environmental data are often
not sampled at the same spatial resolution, as the
former often originates from monitoring programmes
with scarce spatial resolution, whereas the latter can
be a highly resolved output from biogeochemical or
ocean models as well as remote sensing (satellite) data
products. Data matching at a common spatial reso-
lution before modeling are, therefore, needed and is
often done at the highest spatial scale possible. This
is not necessarily the best practice, however, as Nufiez-
Riboni et al. (2021) reported lower prediction errors
if both the environmental dataset and the biological
dataset were downsampled to an intermediate spatial
resolution. Additionally, the choice of model validation
greatly affects the generalizability of the model.
Cross-validation approaches are typically employed to
evaluate model fit and predictive performance.
Random cross-validation (randomly dividing the data
into a train and test set) without considering spatial
and temporal autocorrelation can greatly overestimate
model generalizability. Several authors therefore sug-
gest a form of blocked cross-validation (Hijmans 2012;

Boria et al. 2014; Roberts et al. 2017; Valavi et al.
2019), dividing the study area into different spatial
(or spatio-temporal) strata. The challenge here lies in
the careful selection of strata to avoid unintended
extrapolation and therefore, overestimation of inter-
polation error (Roberts et al. 2017). On the other
hand, if extrapolation is the goal, blocked cross-
validation can be used to measure extrapolation error.
This is particularly important when projecting a spe-
cies outside its historical home range and time, as is
frequently done to assess invasion potential or changes
in species distributions under climate change. De la
Hoz et al. (2019) argue that only assessing internal
validation does not necessarily result in models that
can be transferred in space and time, raising concerns
about modeled future distributions of a species and
derived management needs. If climate change effects
are evaluated, model building should include transfer
in time as well as assessing the overlap between fitted
and projected environmental variables. Muhling et al.
(2020) found that SDM (BRT, RE, ANN, GAM) for
Pacific anchovy and sardine lost considerable predic-
tive power if tested during a marine heat-wave event,
representing a strong shift in an environmental covari-
ate that is likely occurring to play a greater role under
ongoing climate change.

3.2. Metier and fleet

How, when and where fishers fish are key questions
to track changes in fishing distribution, monitor the
effectiveness as well as enforcement of spatial man-
agement (e.g., MPA) or assess the impacts of fishing
on other parts of the ecosystem. A recent proliferation
of remotely collected locations of fishing and
non-fishing vessels at sea has created vast new oppor-
tunities for exploring the behaviors of vessels, iden-
tifying metiers (Joo et al. 2011; Russo et al. 2011,
2016), improving estimates of unobserved fishing
effort (Kroodsma et al. 2018), mapping the spatial
extent of fishing grounds (Kroodsma et al. 2018;
Taconet et al. 2019), comparing fishery carbon foot-
prints (McKuin et al. 2021), inferring illegal fishing
activities (Belhabib et al. 2020; Park et al. 2020; Seto
et al. 2022), and even elucidating human rights abuses
at sea (McDonald et al. 2021a)

In the last two decades, there has been a rapid
expansion in the use of Automatic Identification
Systems (AIS) for collision avoidance and Vessel
Monitoring Systems (VMS) for fisheries enforcement.
Fundamentally, these data sets have a set of latitude
and longitude spatial coordinates, a unique identifier
for an individual vessel, and a time stamp. The AIS



and VMS data are transmitted at regular intervals -
nearly continuously in the case of AIS and ranging
from minutes to hours for VMS. Analyzing this vast
resource of data can be cumbersome with traditional
methods, and underscores the computational gains
from ML. Initially, many studies with AIS and VMS
data had a similar approach to their analysis as studies
analyzing satellite tag data from biological tagging
projects. Analytical approaches often include examin-
ing vessel speeds, turning behaviors, geospatial attri-
butes (e.g., distance from shore, bathymetry),
environmental data (e.g., sea surface temperature),
and other features that can be used as inputs to Al
models for classification of vessel behaviors (e.g., tran-
siting, fishing, searching for fish, trans-shipping).
Kroodsma et al. (2018) as well as Taconet et al. (2019)
published a seminal application of neural networks
to these data enabling the classification of vessel types
and facilitating the mapping of fishing areas globally
in comparison with catch distribution (Watson 2017).
Moreover, the Al analyzed data set from this work
has been made publicly available and is updated reg-
ularly, facilitating several of the other vessel analyses
mentioned above (e.g., Park et al. 2020; White et al.
2020). A major challenge with using VMS and AIS
data is the quality and frequency of transmissions.
Some of the more elaborate illegal fishing efforts
include spoofing (intentionally altering, disabling, or
otherwise obfuscating) their AIS location signals
(Welch et al. 2022). Meanwhile, with VMS data, the
transmission intervals in some cases can either be
inconsistent or simply infrequent enough that gaps in
data sets can diminish the accuracy of models due to
missing some fishing events (Watson and Haynie
2016). Finally, another challenge is the lack of labeled
data available to many analysts for training models.
Without EM or observer data associated with VMS
or AIS data, it can be difficult to match vessel behav-
iors precisely with the activities associated with their
different movements. When it comes to inferring
unmeasured attributes with high ethical and political
implications from vessel tracks like forced labor or
illegal fishing activity, attention should be given to
the occurrence of false positives. Identification of a
class membership, when in fact there is none, can
result in unjust sanctioning and discrimination of
affected vessels (see the discussion around McDonald
et al. (2021a) in McDonald et al. (2021b) and Swartz
et al. (2021)). A similar issue is the possible scale
dependency in the analysis of fishing pressure. Queiroz
et al. (2019) resolved the global overlap between
pelagic longline fisheries identified via ML by
Kroodsma et al. (2018) and the spatial distribution
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of pelagic sharks to identify risk hotspots of shark
bycatch and intentional catches. Even if results are
correct at a global scale and are looked upon at a
regional level by experts, the enormity of the data set
(>70k AIS tracked vessels in this case) can result in
misidentification on a localized scale (Queiroz et al.
2019, 2021). Harry and Braccini (2021) identified false
positives in this classification of pelagic longliners
leading to an overestimation of fishing pressure
hotspots in certain regions in Australian waters with
likely implications for conservation and management.
Still, by refining classification algorithms, some of
these problems could be resolved (Queiroz et al.
2021). In summary, a better balance of positive and
negative cases in training data (Swartz et al. 2021),
ground-truthing of model results (Harry and Braccini
2021; Queiroz et al. 2021; Swartz et al. 2021), aware-
ness of scale-dependency (Harry and Braccini 2021)
and reporting and propagating the uncertainty of class
membership in the model pipeline (Swartz et al. 2021)
can help to alleviate these problems and improve trust
in using ML for law enforcement, conservation, and
management. ML has been also used for fishing
grounds identification for tuna species that reduces
the chances of incidental fishing of sharks (Goikoetxea
et al. 2024). Recent work has combined ML forecasts
of the presence of high biomass species and fuel con-
sumption with route optimization metaheuristics to
reduce fuel consumption and consequent emissions
(Granado et al. 2021, 2024).

3.3. Ecosystem

Understanding interactions among species and the
environment has significant ecological and societal
implications for predicting nature’s response to natural
and anthropogenic changes. Such interactions are fur-
ther exacerbated by spatial and temporal variation of
the ecosystem and its components (Polis et al. 1996;
Hunsicker et al. 2011; Doney et al. 2012). Stressors
such as climate change, fishing, and resource exploita-
tion have been shown to drive ecosystem dynamics
(Blanchard et al. 2012; Lotze et al. 2019).

ML has been used to examine ecosystem-level chal-
lenges for assessing the effects of fishing on non-target
species in the form of risk analysis, delineating key
habitats of target or vulnerable species (Brownscombe
et al. 2020), assessing the degree of predator-prey
interactions in time and space (Griffin et al. 2022),
identifying drivers of ecosystem change, predicting
ocean states (e.g., hypoxia, algae blooms) with impli-
cations on fisheries (Politikos et al. 2021b) or evalu-
ating the impact of regional (e.g., wind farms
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(Friedland et al. 2021)) and global (climate change
(Cheung et al. 2021)) changes on fish and fishing
opportunities. Spatial risk assessment on non-target
species like marine mammals (Breen et al. 2017), sea
turtles or birds (Cleasby et al. 2022) is predominantly
done via SDM by examining the overlap of modeled
species distributions with indicators of fishing pressure
(e.g., effort maps). While distribution models would
be ideal for the prediction of population dynamics in
the face of multiple stressors, these are constrained
due to habitat heterogeneity and plasticity in animal
abundance and behavior across space and time
(Matthiopoulos et al. 2022). Therefore, a pragmatic
approach for risk assessment to support Ecosystem
Based Fisheries Management (EBFM) under hetero-
geneous data, including data with different spatial or
temporal resolution and of both quantitative and qual-
itative nature, are probabilistic ML methods such as
Bayesian networks (Uusitalo 2007; Hart and Pollino
2008; Kaikkonen et al. 2021)

As applied in ecology, Bayesian networks represent
probabilistic dependencies among species and eco-
system factors that influence variables™ likelihood in
an intuitive, graphic form (Jensen 2001); therefore,
different expertise can provide quantitative indicators
for a range of possible scenarios in support of stra-
tegic advice on potential ecosystem responses.
Contrary to black-box ML approaches, the visual
nature of Bayesian networks can help to communicate
modeling results and allow a variety of perspectives
of natural and anthropogenic effects to be represented
(Levontin et al. 2011), while explicitly handling
uncertainty associated with predictions (Fernandes
et al. 2010). With the recent adoption of Bayesian
Networks in predictive ecology, few assumptions can
be made about the data and complex, spatially vary-
ing interactions can be recovered from collected field
data (Trifonova et al. 2015).

Bayesian networks have been proposed as a method
to formalize conceptual models of social-ecological
systems and project system responses to environmen-
tal management interventions (McCann et al. 2006;
Landuyt et al. 2013; Reum et al. 2021). By integrating
spatial relationships, Bayesian networks have been
used to resolve conflicts in the context of marine
spatial planning between fisheries and aquaculture
which revealed alternative fishing locations (Coccoli
et al. 2018). Similarly, the approach has been used to
identify suitable areas for offshore wave and wind
energy sites (Pmarbasi et al. 2019; Maldonado et al.
2022). The spatially explicit Bayesian network models
and the resulting suitability maps demonstrated the
feasibility of using such techniques during site

identification processes across different activities, envi-
ronmental challenges and technological constraints.
Bayesian network ecosystem models can be used
to explore a range of “what-if?“ scenarios, based on
potential physical changes (e.g., increase in tempera-
ture) or anthropogenic marine use (increase vs
decrease in fishing), and the specific trends (increases
or declines) of different ecosystem components in
response to these changes can be explored. For exam-
ple, Trifonova et al. (2017) used a Dynamic Bayesian
Network model with a hidden variable and spatial
autocorrelation to explore the future of different fish
and zooplankton species, given alternate scenarios,
and across spatial scales within the North Sea. They
were able to predict for most fish species a trend of
increasing or decreasing abundance in response to
changes in fisheries catches. This varied across space,
outlining the importance of trophic interactions and
the spatial relationship between neighboring areas.
They were also able to predict trends in zooplankton
biomass in response to temperature change, with the
spatial patterns of these effects varying by species.
Crucially, dynamic Bayesian network models allow for
both species-specific population trends at an
ecosystem-wide scale in different habitat types to be
predicted, as well as for the main indicators of strong
changes in any of these trends to be identified
(Trifonova et al. 2021). Most importantly, Trifonova
et al. (2021) showed that the strength of such indi-
cators (i.e., ecosystem components or variables) may
also vary over time, thus the need to consider both
the spatial and temporal variability of indicators
throughout the trophic chain is critical to ensuring
that the strongest and most consistent, highly pre-
dictable indicators, of ecosystem change, are used.
Uusitalo et al. (2018) and Maldonado et al. (2019)
fitted a series of Dynamic Bayesian Networks with
different models and hidden variable structures to a
system known to have undergone a major structural
change, i.e., the Baltic Sea food web. The authors
found that the exact configuration of the model or
its hidden variables did not considerably affect the
result, and the hidden variables detected a pattern
that agreed with previous research on the system
dynamics. The models used observed data, but relied
on ecological knowledge on the species relationship,
reducing the requirement for data. The models are
not transferable from one area to another, however,
and must be designed specifically for each case study.
The success of using a hidden variable to identify
indicator species of key importance to the ecosystem
dynamics has also helped illuminate the possible
mechanisms behind functional ecosystem changes in



the North Sea (Trifonova et al. 2015) and Gulf of
Mexico (Trifonova et al. 2019). Hidden variables can
detect ecological patterns in the data that agree with
ecosystem change that might not be strictly repre-
sented within the model structure and can reduce the
likelihood of introducing spurious interactions that
allow for more plausible modeling network structures
(Tucker and Liu 2004). This is useful in ecosystem
modeling where complex ecological interactions
change in time due to changing pressures at different
levels of the trophic chain. Using dynamic Bayesian
network models with hidden variables, (Tucker and
Duplisea 2012) predicted functional collapse across
three different geographical regions (I.e., Georges
Bank, East Scotian Shelf and North Sea). Specifically,
a range of ML techniques (wrapper feature selection,
classification and a functional equivalence algorithm
which used a simulated annealing approach) were
applied to fisheries data to identify species that per-
form similar functional roles in different fish com-
munities. The study provided real insights into why
fished ecosystems collapse and why they sometimes
do not recover when a perturbation stops.

3.4. Fisheries management

Successful fisheries management often involves creat-
ing a model of a system, including the harvested
resource and the fishing agents, and delivering rec-
ommendations on a level of harvesting to sustain the
system in the long run. Taking out the maximum
yield while leaving enough for sustainable regrowth
is often defined as the goal (i.e., Maximum Sustainable
Yield). Other goals such as Maximum Economic Yield
or additional objectives within an ecosystem perspec-
tive (e.g., minimum seafloor disturbance) might also
be of interest. A valuable tool for fisheries manage-
ment is Management Strategy Evaluation (MSE), sim-
ulating various levels of exploitation within the
perceived system often in the form of harvest-control
rules trying to find the optimal harvesting strategy
(Punt et al. 2016). MSE is similar to a type of ML
called reinforcement learning, aiming to learn a strat-
egy (or policy) by itself via positive or negatives
incentives. Recent prominent examples of this learning
type comprise algorithms like Alpha Go Zero (Silver
et al. 2017) that surpassed the best human player in
the complex board game Go in 2017 or an Al that
plays several Atari games (like space invaders) at a
superhuman level (Mnih et al. 2015). In reinforcement
learning, a learning agent interacts with an environ-
ment through the perception of the environment’s
state. Based on the state, an agent can select an action
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and enter a new state, receiving a delayed reward as
a consequence of one or several of its actions. The
goal is to learn a strategy to best interact with the
given environment to maximize the total amount of
reward earned (Sutton and Barto 2018). A simple
formulation of fisheries management as a reinforce-
ment learning problem, with the objective of maxi-
mizing the aggregated reward over time, would involve
the distribution of a fish stock within the ocean as
environment, fishers moving around and harvesting
this resource as agents, fisheries yield or revenue as
rewards and fuel costs as negative incentives. One of
the first attempts using reinforcement learning to
explore fishing patterns and their changes due to man-
agement regulations was made by Dreyfus-Leon
(1999). The author used two shallow neural networks
guiding the decisions of a vessel moving within or
between fishing locations. The model was extended
to multiple agents and applied to the east Pacific yel-
lowfin tuna fishery in Dreyfus-Leon and Kleiber
(2001) as well as aspects of information sharing
between vessels in a more theoretical approach
(Dreyfus-Leon and Gaertner 2006). Similarly Russell
and Zimdars (2003), later updated with a DL approach
(Deep Q-Learning) by Bouton et al. (2019), explored
how to manage multiple agents (fishers) to harvest a
common resource sustainably in analogy to a fisheries
commissioner finding an optimal quota distribution
among fleets. Bailey et al. (2019) explored various
management policies ranging from an open-access
situation to fishery-wide quotas via total allowable
catch and individual tradable quotas, and amidst spa-
tial closures/reserves with their agent-based model
POSEIDON. The fishers’ decisions in this scenario
were modeled as a multi-armed bandit problem
(Sutton and Barto 2018), a classic reinforcement learn-
ing type formulation in situations where agents are
allowed to choose an option among several finite ones
to maximize their reward. In large environments with
many agents, reinforcement learning is hampered by
the curse of dimensionality with an increasing number
of possible actions. Here, heuristic search algorithms
can be used to explore possible multi-faceted actions
(Carrella et al. 2019) or a decomposing state space
and approximate more complex actions via DL
(Bouton et al. 2019). The presented approaches sum-
marize attempts in the development of agent-based
fisheries ML models to understand fishing patterns
and to derive new effective policies (e.g., quota
allocations among multiple fleets with multiple objec-
tives). Although reinforcement learning for manage-
ment and decision-making is currently more of a
theoretical exercise in conceptual models that lack
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real-life implementations (Chapman et al. 2021), their
close resemblance to the iterative approach of adaptive
management and MSE shows potential for the future
of fisheries management.

Dynamic ocean management approaches have been
increasingly explored in recent years to rapidly incor-
porate the latest environmental information into exist-
ing ML approaches and generate spatially explicit
forecasts for species targeting or avoidance (e.g.,
Hazen et al. (2018); Breece et al. (2021)). Many such
approaches are operated by BRT (Elith et al. 2008)
that are trained on historic data and then imple-
mented on new data as they are acquired from sat-
ellites or other sources, often in near real-time. In
the EcoCast application (Welch et al. 2020), BRT
generate SDM for both target species (swordfish) and
bycatch species (turtles, sharks, sea lions) as functions
of satellite data (e.g., sea surface temperature, chlo-
rophyll) and produce pixelated maps for which each
pixel is colored based on predicted ratios between
these target and bycatch species. This near real-time
tool is updated daily online, providing fishers with a
decision analysis tool to help them avoid bycatch.
Many fisheries lack sufficient observer and other spa-
tially explicit data to support such tools, but EcoCast
is illustrative of the types of operations that AI/ML
approaches will increasingly facilitate.

4. A Way forward: trustworthy Al

While ML in fisheries bears various opportunities,
precautionary measures must be taken to avoid under-
mining the trust of scientists, fishers, managers and
stakeholders (Sohns et al. 2022). First and foremost,
privacy issues and ethical concerns of fishers need to
be taken seriously, especially when it comes to video
surveillance on board vessels. Data use should be
stated beforehand, and permissions renewed if addi-
tional use within ethical boundaries and legislations
is desired, especially if human images or behaviors
can be identified or inferred. Lack of transparency
regarding the extent of data use could greatly decrease
trust in ML applications.

Additional concerns exist around biases in training
data and algorithms leading to predictive profiling
- suspecting a certain behavior (e.g., illegal fishing)
from an individual based on past experiences or close
resemblance to other individuals exerting this behavior
(Probst 2020). False positives in this regard are par-
ticularly detrimental in automated vessel classification,
if certain behaviors may trigger sanctions or enforce-
ment actions. In addition, biases in fully automated
biological sampling and analysis can be greatly

amplified with effects on stock assessment and man-
agement. Practitioners should be aware of potential
pitfalls regarding domain shifts, in which discrepancies
arise between model training data versus data with
which models are deployed, leading to unintended
extrapolation of algorithms. Such failures, together
with the perception of ML as a black box could lead
to misperceptions or distrust by stakeholders around
stock quotas and management rules (Sohns et al. 2022).
Critiques on the black-box nature of ML may be
justified when it comes to adversarial attacks—inten-
tional modifications of data/imagery that are meant
to break a classifier, via exploiting the classification
boundaries and provoking a completely opposite clas-
sification. Prominent examples include stickers being
placed on an object, e.g., resulting in misclassifying
a stop sign as a speed sign (Eykholt et al. 2018),
images that are always classified as a toaster (Brown
et al. 2018), or a 3D-printed turtle that is seen as a
harmful rifle (for an overview see Akhtar and Mian
2018). Although examples from fisheries are yet hard
to imagine, Global Fishing Watch reported several
artificially simulated AIS tracks that were fed to a
public AIS web page and picked up in analysis for
marine monitoring (Bergman 2021). Systematic data
analysis and careful cross-referencing with additional
data sources like satellite imagery made it possible to
identify these tracks. Nonetheless, without careful
review, it is possible for publicly available data to
include adversarial or malicious examples capable of
shifting the decision boundaries of a classifier.
Although manipulation of AIS signals and data sets
to such an extent is an exception rather than a rule,
it is a notable example of potential problems that
intelligent systems can face. This example highlights
the importance of good knowledge of the data being
used by using checks (manual and/or automated) and
revisiting the data in contrast with other data (e.g.,
AIS vs VMS and Catches in Taconet et al. 2022).
When using confidential data, e.g., georeferenced
data that allows for identifying individual vessels
and exposing their fishing locations, scientists typ-
ically aggregate analysis steps to cautiously ano-
nymize results. Often, this is done manually before
any statistical model is applied. The introduction of
DL methods, working best on raw, disaggregated
data bears the risk of breaching confidential infor-
mation. Even if ML practitioners guard against a
negligent breach, confidential information can still
be inferred via a malicious attack on the trained
model. The flow of information in a ML model is
not one-way but can be reversed, reconstructing the
raw training data or some subset from a trained



model, called model inversion (Veale et al. 2018).
The possibility of model inversion and membership
inference attacks, the latter seeking to identify an
individual as part of the training set, suggests that
some models themselves may warrant considerations
as confidential data. This finding has implications
for reporting results, the ever-growing open acces-
sibility of models, and the possibility for new users
to openly apply existing models to their own data.
To remedy this, data can be anonymized before any
processing.

5. Conclusion and outlook

ML is transforming fishery science and management
in various ways, ranging from automation of data
sampling and simplification of labor-intensive tasks
to inference of stock and fleet dynamics to a higher
level of individual guidance in management systems.
Notably, the automation of biometric measurements
from fish drives expectations of standardization across
institutes/working groups to reach a level of indepen-
dence from various human biases. The utilization of
transfer learning, simply modifying (e.g., training only
the last layer of a complex CNN) a pre-trained model
to a new task or situation is a cost-effective approach
that can accelerate data collection. Similarly, ML offers
various opportunities for inference and analysis,
enabling the utilization of large data sets from differ-
ent sources where human experience may be limited
or where relationships are poorly understood. It must
be remembered, however, that systems, methods, and
applications are at different stages of operational read-
iness. In recent years, with the advent of DL, numer-
ous studies sought to automate steps in the data
collection pipeline, with most of them still considered
under development, before being readily deployed in
the field/industry. One of the main challenges remains
to reach an adequate level of generalization under
nonstandardized conditions in different environments.
When it comes to inferring stock dynamics, there is
already a wider use of traditional ML, but DL appli-
cations are still limited. Meanwhile, overcoming the
challenges of AIS/VMS data, especially around data
sizes, is a perfect application for ML. ML applications
in stock assessment and management are currently
only rarely considered, but they show great promise
for the future if they gain trust, despite their black-box
nature. Finally, as more ecosystem models use ML
techniques, it is important to exploit the strengths of
each model type, while understanding how they differ
and finding ways to generalize their outcomes to
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strengthen projections under a range of natural and
anthropogenic scenarios.
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