
Reviews in Fisheries Science & Aquaculture

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/brfs21

Machine Learning Applications for Fisheries—At Scales
from Genomics to Ecosystems

Bernhard Kühn, Arjay Cayetano, Jennifer I. Fincham, Hassan Moustahfid,
Maria Sokolova, Neda Trifonova, Jordan T. Watson, Jose A. Fernandes-
Salvador & Laura Uusitalo

To cite this article: Bernhard Kühn, Arjay Cayetano, Jennifer I. Fincham, Hassan Moustahfid,
Maria Sokolova, Neda Trifonova, Jordan T. Watson, Jose A. Fernandes-Salvador &
Laura Uusitalo (2025) Machine Learning Applications for Fisheries—At Scales from
Genomics to Ecosystems, Reviews in Fisheries Science & Aquaculture, 33:2, 334-357, DOI:
10.1080/23308249.2024.2423189

To link to this article:  https://doi.org/10.1080/23308249.2024.2423189

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 09 Nov 2024.

Submit your article to this journal 

Article views: 1749

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=brfs21

https://www.tandfonline.com/journals/brfs21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23308249.2024.2423189
https://doi.org/10.1080/23308249.2024.2423189
https://www.tandfonline.com/doi/suppl/10.1080/23308249.2024.2423189
https://www.tandfonline.com/doi/suppl/10.1080/23308249.2024.2423189
https://www.tandfonline.com/action/authorSubmission?journalCode=brfs21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=brfs21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23308249.2024.2423189?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23308249.2024.2423189?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/23308249.2024.2423189&domain=pdf&date_stamp=09%20Nov%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/23308249.2024.2423189&domain=pdf&date_stamp=09%20Nov%202024
https://www.tandfonline.com/action/journalInformation?journalCode=brfs21


Reviews in Fisheries Science & Aquaculture
2025, VOL. 33, NO. 2, 334–357

Machine Learning Applications for Fisheries—At Scales from Genomics to 
Ecosystems

Bernhard Kühna, Arjay Cayetanoa, Jennifer I. Finchamb, Hassan Moustahfidc, Maria Sokolovad,  
Neda Trifonovae, Jordan T. Watsonf, Jose A. Fernandes-Salvadorg and Laura Uusitaloh

aMarine Living Resources, Thünen Institute of Sea Fisheries, Bremerhaven, Germany; bCefas, Lowestoft, UK; cNational Oceanic and 
Atmospheric Administration, U.S. Integrated Ocean Observing System, Silver Spring, MD, USA; dWageningen Marine Research, Wageningen 
University & Research, Wageningen, The Netherlands; eSchool of Biological Sciences, University of Aberdeen, Aberdeen, UK; fPacific Islands 
Ocean Observing System (PacIOOS), University of Hawaii at Manoa, Honolulu, HI, USA; gAZTI, Marine Research, Basque Research and 
Technology Alliance (BRTA), Sukarrieta, Spain; hFisheries and Fish Resources, Natural Resources Institute Finland (Luke), Helsinki, Finland

ABSTRACT
Fisheries science aims to understand and manage marine natural resources. It relies on 
resource-intensive sampling and data analysis. Within this context, the emergence of machine 
learning (ML) systems holds significant promise for understanding disparate components of 
these marine ecosystems and gaining a greater understanding of their dynamics. The goal of 
this paper is to present a review of ML applications in fisheries science. It highlights both 
their advantages over conventional approaches and their drawbacks, particularly in terms of 
operationality and possible robustness issues. This review is organized from small to large 
scales. It begins with genomics and subsequently expands to individuals (catch items), 
aggregations of different species in situ, on-board processing, stock/populations assessment 
and dynamics, spatial mapping, fishing-related organizational units, and finally ecosystem 
dynamics. Each field has its own set of challenges, such as pre-processing steps, the quantity 
and quality of training data, the necessity of appropriate model validation, and knowing 
where ML algorithms are more limited, and we discuss some of these discipline-specific 
challenges. The scope of discussion of applied methods ranges from conventional statistical 
methods to data-specific approaches that use a higher level of semantics. The paper concludes 
with the potential implications of ML applications on management decisions and a summary 
of the benefits and challenges of using these techniques in fisheries.

1.  Introduction

Fisheries science needs extensive amounts of data to 
monitor and manage marine natural resources that 
provide ecological, social, and economic benefits. Data 
collection and data processing are among the most 
labor-intensive and costly aspects of fisheries science 
(Dennis et  al. 2015), leading, for example, to the use 
of vessels of opportunity (Uriondo et  al. 2024), reduc-
tions in fishery-independent surveys (DeFilippo et  al. 
2023), and transitions from human observers to elec-
tronic monitoring (van Helmond et  al. 2020). 
Resource-intensive and critical data tasks include the 
aging of fish using otoliths/statoliths, gonad analysis, 
egg counting and identification, recording of catches 
at sea, analysis of vessel location data, video and 
image processing, genetic analysis of population 

structures, use of acoustic data in fish stock assess-
ment, analysis of environmental conditions and sam-
pling for other biological parameters (e.g., to derive 
length-weight relationships). Meanwhile, fisheries 
management is moving toward more holistic 
ecosystem-based approaches that require consideration 
of all human activities, including the impacts of activ-
ities on non-target species and habitats (Pedreschi 
et  al. 2019; Link and Marshak 2022).

Rapid technological developments have enabled 
extensive amounts of data to be collected through 
innovative and affordable sensor technology, while 
data storage capacity has become less expensive and 
computational power has expanded. Processing and 
analyzing these vast amounts of data presents a bot-
tleneck requiring new and automated workflows 
(Malde et  al. 2020; Rubbens et  al. 2023). The upsurge 
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of machine learning (ML) methods carries a promise 
of automating cumbersome steps in the analysis of 
fisheries data. Setting up ML systems and automated 
workflows requires substantial initial investment but 
can considerably alleviate resource limitations in the 
long run (Irigoien et  al. 2008; Taconet et  al. 2019), 
improve consistency and address the increasingly com-
plex ecological processes considered in management 
decisions (Fernandes-Salvador et al 2022).

ML refers to mathematical models that can perform 
a specific task without explicit instructions. ML tasks 
can be broadly divided into unsupervised, supervised, 
and reinforcement learning (Figure 1). Unsupervised 
learning focuses on finding patterns in unlabeled 
input data (e.g., finding clusters of similar data), 

whereas supervised learning requires labeled input 
data which is mapped to output data (e.g., identifying 
species from photographs, having seen other photo-
graphs with the correct identification). In reinforce-
ment learning, an agent can learn a strategy via 
feedback mechanisms, without having received explicit 
instructions (e.g., a robot finding its way through a 
maze). Deep learning (DL) is a subset of ML that 
utilizes artificial neural networks (ANN) with a high 
number of layers, allowing them to learn complex 
patterns from large unstructured or newly added data. 
DL is particularly popular in the form of convolu-
tional neural networks (CNN), which can learn spatial 
and temporal dependencies through a series of 
context-dependent filters (convolution). Shallow learn-
ing, as opposed to deep learning, is used to refer to 
other ML approaches not able to utilize the higher 
order of semantics that DL can use.

This article provides a review of existing ML appli-
cations in fisheries science to enhance the use of ML 
methods by providing discipline-specific examples 
within the field. Challenges and opportunities posed 
by ML in the context of the peculiarities of fisheries 
science problems and data are also discussed. Instead 
of organizing the paper by ML methodologies, it is 
organized around fisheries science sub-disciplines 
where ML has been used or has the potential to be 
used. This allows readers to explore examples of appli-
cations within topical areas of their interest. Therefore, 
this review is organized into two broad categories 
(Figure 2), orientating on the core realms of fisheries 
sciences: “Analysis of Samples” (section 2), which deals 
with the collection, processing and categorization of 
samples collected on research and fishing vessels; and 
“Analysis of Dynamics” (section 3), which compiles 
these data to infer dynamics on the state of the stock, 
metier/fleet, and ecosystem to inform management 
(Lackey 2005; Hart and Reynolds 2008). Within these 

Figure 1. S chematic showing the three divisions of Machine 
Learning (ML): Unsupervised Learning – finding patterns in 
unlabeled data aka clustering, Supervised Learning - finding a 
mapping of the input to a labeled output, e.g., discriminating 
between two categories and Reinforced Learning – learning a 
strategy via interaction with an environment and a reward/
penalty system.
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Figure 2.  Graphical summary of the topics covered in this review organized at different hierarchical levels from small to large 
revolving around important realms in fisheries science.
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broader categories, this work looks at different scales 
where ML is applied from small to large. The analysis 
of samples section focuses on genomic analysis, bio-
metric data of individual fish, in-situ monitoring of 
fish shoals and onboard vessel monitoring. Meanwhile, 
the analysis of the dynamics section ranges from 
inferring dynamics at the stock level, and character-
ization of different fishing styles (metiers) and fleets 
up to the ecosystem level. The article ends with the 
fisheries management implications of ML applications, 
as well as the potential pitfalls and future directions. 
Table 1 gives an overview of the studies that are dis-
cussed in this article.

2.  Analysis of fish samples

2.1.  Genomics

Genomics technology is used in numerous fisheries 
applications (Mohanty et  al. 2019) such as species 
identification for seafood authentication and trace-
ability (Kusche and Hanel 2021), post-harvest value 
addition, monitoring invasive species, and improved 
fisheries management (Goodwin et  al. 2017; Hansen 
et  al. 2018; Martinsohn et  al. 2019). Fisheries science 
also utilizes genetics to answer questions of population 
genetics for fisheries management advice (Valenzuela- 
Quiñonez 2016), e.g., identifying the degree of con-
nectivity, migration patterns and stock mixing in time 
and space, evolution due to fishing pressure acting as 
a selective force, or seascape genetics which link envi-
ronmental factors to genetic differences found across 
ocean regions (Galindo et  al. 2006; Selkoe et  al. 2016). 
The field quickly transformed from studying a few 
neutral markers to the analysis of single nucleotide 
polymorphisms (SNP) across the whole genome 
(Valenzuela-Quiñonez 2016). Targeting a larger num-
ber of loci across the whole genome allows for greater 
sensitivity in detecting genetic differences between 
populations (Luikart et  al. 2003). Identifying markers 
with high discriminatory power is particularly needed 
in situations where management units do not match 
the natural population boundaries (Hemmer-Hansen 
et  al. 2019; Weist et  al. 2019; Wenne et  al. 2020). 
Identifying a small set of discriminative markers is 
difficult when dealing with 1000 to millions of SNP, 
however (Kavakiotis et  al. 2015). A common approach 
with large genomic datasets is to first use dimension-
ality reduction such as principal component analysis 
(PCA) (Chen et  al. 2018). Correlations and 
higher-order interactions among genes pose additional 
challenges for identifying a small set of unique genetic 
markers, so several studies utilize Random Forest 

modeling (RF) (Chen and Ishwaran 2012; Brieuc et  al. 
2018), as it can deal with multicollinearity, interac-
tions, a large number of features, and it includes 
variable-importance metrics. For example, Sylvester 
et  al. (2018) used RF for the selection of SNP for 
population assignment in Atlantic salmon and Alaskan 
Chinook salmon. Similarly, Sinclair-Waters et  al. 
(2018) identified markers via regularized RF for esti-
mating the proportion of Gilbert Bay cod stemming 
from a distinct population in a marine protected area 
(MPA) in fisheries catches. In Sebastes mentella 
(beaked redfish), a screening procedure of SNP via 
RF identified 21 loci to discriminate between different 
ecotypes of the species (Saha et  al. 2021). The 
R-package “assignPOP” implements several common 
ML classifiers which incorporate both genomic and 
non-genomic information into population assignment 
(Chen et  al. 2018).

A further revolution in genomics emerged through 
simultaneous sequencing of the DNA of different spe-
cies within environmental samples, termed metage-
nomics or environmental DNA analysis (eDNA). This 
analysis often detects species’ presence in aquatic 
environments with higher sensitivity than previous 
sampling methods (Bergman et  al. 2016; Thomsen 
et  al. 2016). Recent studies have also found a positive 
correlation between eDNA concentration in water and 
species biomass useful for fisheries management 
(Lacoursière-Roussel et  al. 2016; Yamamoto et  al. 
2016; Rourke et  al. 2022). The comparison of DNA 
sequences in the sample with those of a reference 
database is a critical step in metabarcoding, where 
several traditional bioinformatics sequence 
alignment-based classifiers (Bokulich et  al. 2018; 
Mathon et  al. 2021) and ML classifiers such as neural 
networks (Nugent and Adamowicz 2020) or naïve 
Bayes (Bokulich et  al. 2018) can be deployed to find 
the correct taxon or the nearest taxonomic lineage 
(Bokulich et  al. 2018). Speed and accuracy are key 
requirements for such algorithms (Bokulich et  al. 
2018; Flück et  al. 2021). The first attempts of deploy-
ing deep learning to a taxonomic assignment of short 
eDNA sequences for tropical freshwater fish were 
promising with similar accuracy but 150 times faster 
(Flück et  al. 2021). ML also offers the opportunity to 
avoid the work of taxonomic identification by collect-
ing eDNA and inferring the species composition from 
that data. This allows inferring the environmental 
status and the effects of a certain stressor level on 
community composition (Cordier et  al. 2017, 2018, 
2019). This approach allows including taxa which are 
difficult to identify and are not regularly used in the 
derivation of biological indices. Although this 
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Table 1.  Overview of studies mentioned in the main text utilizing ML in the different fields.
Section Objective Data Algorithm Study

Analysis 
Samples

Genomics Identification of genetic 
markers

Sequencing output RF Chen and Ishwaran, (2012)
Brieuc et  al. (2018)
Sylvester et  al. (2018)
Sinclair-Waters et  al. (2018)
Saha et  al. (2021)

Taxonomic alignment in 
metabarcoding

Sequencing output ANN
Naïve Bayes
CNN

Nugent and Adamowicz (2020)
Bokulich et  al. (2018)
Flück et  al. (2021)

eDNA for biomonitoring Sequencing output RF/ SOM
CNN

Cordier et  al. (2017, 2018, 2019)
Park et  al. (2023)

Biometrics On-board Fish 
identification & 
counting

Images CNN French et  al. (2015)
French et  al. (2020)

Fish length estimation Images CNN Monkman et  al. (2019)
Garcia et  al. (2020)
Álvarez-Ellacuría et  al. (2020)
Yu et  al. (2020)

Age reading from otoliths Images SVM/ANN
SVM
CNN
Transformers

Fablet and Le Josse (2005)
Bermejo et  al. (2007)
Moen et  al. (2018)
Moore et  al. (2019)
Ordoñez et  al. (2020)
Politikos et  al. (2021a)
Ordoñez et  al. (2022)
Martinsen et  al. (2022)
Moen et  al. (2023)
Bojesen et  al. (2024)
Cayetano et  al. (2024)
Sigurðardóttir et  al. (2023)

Fish Assemblages In-situ fish identification Hydroacoustic data SVM/MLP/PNN Robotham et  al. (2010)
In-situ fish identification 

and abundance 
estimation

Hydroacoustic data RF/ MLP/ Nearest 
Neighbour/ Decision 
Trees

RF

Uranga et  al. (2017)
Baidai et  al., 2020)

In-situ fish identification Images SVM/CNN Villon et  al. (2016)
In-trawl catch 

identification
Images CNN Ditria et  al. (2020)

Garcia et  al. (2020)
Allken et  al. (2021)
Sokolova et  al., 2021b, 2021a)
Yu et  al. (2022)

Electronic 
monitoring

Fish identification and 
counting in a 
commercial 
environment

Images CNN French et  al. (2015,2020)
Lu et  al. (2020)
Tseng and Kuo, (2020)
Qiao et  al. (2021)
van  Essen et  al. (2021)
Lekunberri et  al. (2022)
Ovalle et  al. (2022)
Khokher et  al. (2022)
Sokolova et  al. (2023)

Identification of catch/
bycatch events

Images CNN Pierre (2018)
Qiao et  al. (2021)
Khokher et  al. (2022)
Acharya et  al. (2024)
Saqib et  al. (2024)

(Continued)
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ML-based approach for biomonitoring (Cordier et  al. 
2021) is not yet frequently applied, it can further 
facilitate eDNA-based monitoring of fish communities 
in response to fishing pressure, e.g., in the context of 
MPA (Bani et  al. 2020; Boulanger et  al. 2021; Gold 

et  al. 2021), which currently rely on taxonomic assign-
ment. Most recently Park et  al. (2023) investigated 
ML algorithms for taxonomic classification of marine 
metagenomes. They applied DL and a novel Residual 
Network architecture that leverages natural language 

Section Objective Data Algorithm Study

Analysis 
Dynamics

Stock/Population Inferring life-history 
parameters

Tabular data of life 
history parameters

Factor Analysis/Major 
axis regression

ANN
BRT
Decision Trees/RF/BRT

Thorson et  al. (2017)
Benzer and Benzer (2016, 2019)
Morais and Bellwood (2018)
Liu et  al. (2020)

Stock-recruitment 
modeling

Stock assessment model 
output/ Survey data

ANN
Naïve Bayes
RF

Chen and Ware (1999)
Chen et  al. (2000)
Huse and Ottersen (2003)
Megrey et  al. (2005)
Fernandes et  al. (2010)
Smoliński, 2019
Kühn et  al. (2021)

Species-distribution 
modeling

Spatial/ Spatio-temporal 
data

Various (BRT, RF, BART, 
ANN, MaxEnt, ….)

Muhling et  al. (2020)
Palacios-Abrantes et  al. (2020)
Stock et  al. 2020
Costa et  al. (2023)

Enhance Process-based 
population/stock 
assessment models

Tabular data of temporal 
dynamics

Physics-informed ANN
BRT

Rackauckas et  al. (2020)
Karniadakis et  al. (2021)
Lüdtke and Pierce (2023)

Metier/Fleet Identification of métiers 
and vessel behavior

AIS/ VMS data ANN Joo et  al. (2011)
Russo et  al. (2011)

Improve fishing effort 
estimates

AIS/ VMS data CNN Kroodsma et  al. (2018)

Spatial mapping of fishing 
grounds

AIS/ VMS data CNN Kroodsma et  al. (2018)
Taconet et  al. (2019)

Route optimization Spatial data Genetic algorithm Granado et  al. (2021, 2024)
Inferring illegal activity AIS/ VMS data + auxiliary 

data
CNN Belhabib et  al. (2020)

Park et  al. (2020)
Seto et  al. (2022, 2023)

Infer human right abuse AIS/ VMS data + auxiliary 
data

CNN/RF/SVM McDonald et  al. (2021a)

Identify risk hotspots for 
bycatch

AIS/ VMS data + auxiliary 
data

CNN
Naïve Bayes/MLP/RF/

SVM

Queiroz et  al. (2019, 2021)
Goikoetxea et  al. (2024)

Ecosystem Spatial distribution maps 
and risk assessment

Spatial/ Spatio-temporal 
data

Various (BRT, RF, ANN, 
MaxEnt, ….)

Brownscombe et  al. (2020)
Griffin et  al. (2022)
Politikos et  al. (2021b)
Friedland et  al. (2021))
Cheung et  al. (2021)
Breen et  al. (2017)
Cleasby et  al. (2022)

Identify ecosystem 
dynamics, risk 
assessment and testing 
of “what if” scenarios

Various data types 
(quantitative/ 
qualitative)

Bayesian Network Trifonova et  al. (2017, 2019, 
2021)

Uusitalo et  al. (2018)
Maldonado et  al. (2019)
Tucker and Duplisea (2012)

Scenario analysis in the 
context of marine 
spatial planning (MPA, 
windparks, …)

Various data types 
(quantitative/ 
qualitative)

Spatial Bayesian 
Network

Coccoli et  al. (2018)
Pınarbaşı et  al. (2019)
Maldonado et  al. (2022)

Management MSE-type simulations via 
agent-based modeling

Various data types Shallow RL
Deep RL

Dreyfus-Leon (1999),
Dreyfus-Leon and Kleiber (2001)
Dreyfus-Leon and Gaertner 

(2006)
Russell and Zimdars (2003)
Bouton et  al. (2019)

Testing of spatial 
management strategies

Various data types Shallow RL Bailey et  al. (2019)

Dynamic ocean 
management via 
Spatial distribution 
models

Spatio-temporal data BRT Hazen et  al. (2018)
Breece et  al. (2021)
Welch et  al. (2020)

ANN: artificial neural network; BART: Bayesian additive regression trees; BRT: boosted regression trees; CNN: convolutional neural network; MLP: multilayer 
perceptron; PNN: probabilistic neural network; RL: reinforcement learning; RF: random forest; SVM: support vector machines.

Table 1.  Continued.
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processing and CNN architectures to map input 
sequence data (k-mers) to taxonomic groups without 
reliance on a curated taxonomic tree. The results sug-
gested that high genome coverage and rectification of 
class imbalance (i.e., highly uneven number of obser-
vations in the different classes) are prerequisites for 
a well-trained model and, therefore, should be a major 
consideration in future ML work.

2.2.  Biometrics

Collection and analysis of fish biometric data can be 
divided into two categories: (1) species identification 
and collection of data on morphological features such 
as body measurements, and (2) the inference of indi-
rect features such as age and growth rates. The mea-
surement of external features can be completed on a 
vessel, at the harbor or from previously collated sam-
ples in a lab setting, often involving multiple staff 
members identifying, counting, weighing, and mea-
suring the specimens whilst noting the information 
before uploading the data into a suitable database. 
This is often facilitated by technology such as elec-
tronic measuring boards and calipers with some form 
of automated data transfer. To automate the data col-
lection process, the individual fish in a sample would 
need to be recognized and identified successfully, a 
task referred to as “sorting,“ before the measurement 
was taken.

The process of sorting is particularly challenging 
in a commercial environment, in comparison to a 
scientific survey, as conveyor belts are often used to 
move samples. As a result, sample images often 
include other objects and artifacts. The work done by 
Strachan (1993) represents some of the early attempts 
to automate the process of sorting using descriptors. 
Later, White et  al. (2006) utilized an image processing 
algorithm to identify and measure fish on a conveyor 
belt. Their approaches rely on traditional image pro-
cessing techniques and require a clear image of the 
individual fish to be identified. The quickly developing 
DL techniques, particularly region-based CNN 
(R-CNN) methods such as Fast R-CNN (Girshick 
2015), Faster R-CNN (Ren et  al. 2016), and Mask 
R-CNN (He et  al. 2017) can speed up the recording 
of morphological features. As a notable example, 
Monkman et  al. (2019) proposed standard regional 
CNN implementation to perform the task of fish 
detection and length estimation from raw input 
images. The approach has the advantage of being 
robust to horizontal flipping and downsampling, but 
falling short when the image orientation is subjected 
to a significant degree of rotation. French et  al. (2015) 

utilized CNN to successfully isolate and count dis-
carded fish in footage from an operational trawler, 
becoming one of the earliest studies that utilized a 
CNN-based approach on a low-resolution setting and 
without requiring well-defined image capture tech-
niques. More recently, French et  al. (2020) trained a 
multi-class Mask R-CNN model to segment objects 
of a single fish class and identify species. An advan-
tage of the Mask R-CNN-based approach is that it 
performs both the detection and segmentation tasks 
simultaneously, removing the need to isolate the fish 
from background objects. Several related studies 
(Álvarez-Ellacuría et  al. 2020; Garcia et  al. 2020; Yu 
et  al. 2020) applied Mask R-CNN to improve fish 
detection performed as part of the biometric analysis.

The second category of studies involving biometric 
data aims to infer certain indirect characteristics such 
as age and growth rate. The age of fish is determined 
by counting the yearly ring patterns in the otoliths 
(Choat and Axe 1996). Though the collection of oto-
liths cannot be improved through ML, processing and 
counting the rings could be significantly expedited 
with successful image analysis. Early attempts of ML 
to automate age estimation formulated the problem 
as a classification task, with Fablet and Le Josse (2005) 
using both support vector machines (SVM) and arti-
ficial neural networks to classify plaice (Pleuronectes 
platessa) otolith images into 5 distinct age groups. 
Bermejo et al. (2007) also attempted to automate aging 
otoliths using SVM. In this approach, both PCA and 
hand-crafted morphological feature extraction were 
applied to a database of images focusing primarily on 
the shape of otoliths. The study relied heavily on the 
assumption that the outer otolith shape changes dis-
tinctively in relation to the fish age. This can be prob-
lematic when considering fish species such as eel that 
exhibit high otolith shape variability among individ-
uals of the same age (Hamrin and Doering-Arjes 
2002). Formulating the problem as a regression task 
(no predefined discrete set of ages), Moen et al. (2018) 
and Moore et  al. (2019) adapted pre-trained CNN 
designed for object recognition to estimate the age of 
fish from otolith images. In Moen et  al. (2018), the 
image dataset included Greenland halibut (Reinhardtius 
hippoglossoides) with ages up to 26 years. Age estimates 
were correct in 29% of cases and an additional 38% 
of cases had an error of only one year. A similar 
approach (Moore et  al. 2019) used New Zealand snap-
per (Chrysophrys auratus) and hoki (Macruronus 
novaezelandiae), with ages up to 27 and 18, respec-
tively, obtaining an accuracy of 47% with an addi-
tional 35% having only an error of one year.  
One notable advantage of this method was that the 
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CNN in these cases were previously designed and 
then adapted to the task, removing the need to design 
a CNN from scratch – an advantage for fisheries sci-
entists without a computer vision background. More 
recently, a multi-task learning approach was developed 
by Politikos et  al. (2021a) where a CNN was con-
structed to predict both fish age and length from 
otolith images of red mullet (Mullus barbatus). 
Applying a trained algorithm from one institution/
working group to otolith images acquired at a differ-
ent place with the goal of inter-institutional standard-
ization is still considered an issue. For this reason, 
Ordoñez et  al. (2022) modified a CNN originally 
trained on Norwegian Greenland halibut otolith 
images to classify the ages of Greenland halibut oto-
liths acquired in Iceland via domain adaptation, stress-
ing the fact that the domain shift cannot be adequately 
handled by simple preprocessing alone. Apart from 
domain adaptation, there are also recent improvements 
in other implementation aspects such as the use of 
ensemble learning (Moen et  al. 2023) and transform-
ers (Sigurðardóttir et  al. 2023) as well as several works 
addressing the lack of explainability of the DL-based 
approaches (Ordoñez et  al. 2020; Martinsen et  al. 
2022; Bojesen et  al. 2024; Cayetano et  al. 2024).

1.3.  In situ fish aggregations

Dynamic (e.g., sea surface temperature) and static 
(e.g., depth, latitude, longitude, seafloor habitat) char-
acteristics of a particular location can drive spatial 
distributions of fish in a variety of ways (e.g., seasonal 
spawning events) among different species. Trying to 
quantify and assess species and the conditions they 
live in with minimal disturbance has become more 
feasible with technologies such as hydroacoustic, 
underwater visual monitoring and machine learning- 
based data analysis.

Identifying different species in hydroacoustic data 
started by utilizing standard statistical methods 
(LeFeuvre et  al. 2000; Lawson et  al. 2001), but has 
transformed toward the use of ML. For example, 
Robotham et  al. (2010) identified schools of anchovy, 
jack mackerel and sardine using SVM, multi-layered 
perceptron (MLP), and probabilistic neural networks 
(PNN), with better performance from the SVM and 
MLP techniques. Image processing techniques and ML 
were also used to automate the analysis of commercial 
medium-range sonar on fishing vessels to detect the 
presence/absence of bluefin tuna (Tunnus thynnus) in 
the Bay of Biscay (Uranga et  al. 2017). More recently, 
ML methods were applied to acoustic data gathered 
by a commercial echosounder buoy to identify tropical 

tuna aggregations (Baidai et  al. 2020). Meanwhile, 
hydroacoustic data analysis has been streamlined 
through the development of CNN to aid in the task 
of labeling data (Sarr et  al. 2020). Underwater in situ 
species identification can be carried out—in a 
labor-intensive and expensive manner—by divers, with 
minimal impact on sensitive communities. The use 
of underwater HD videos and still images are 
cost-efficient alternatives, but they generate large data-
sets (>100 TBs) that need to be processed and clas-
sified afterwards. Applying two supervised ML 
methods (SVM and CNN) to automatically detect and 
recognize coral reef fishes in underwater HD, Villon 
et  al. (2016) found that DL CNN were more efficient 
but were also more likely to misclassify background 
habitats than SVM.

An increasingly important noninvasive method for 
monitoring fish populations of both pelagic (Rosen 
and Holst 2013) and demersal (DeCelles et  al. 2017) 
species is attaching underwater cameras to fishing 
gear. This approach allows fish monitoring without 
catching the target species (the net is equipped with 
an open codend), therefore avoiding unnecessary mor-
tality. Several studies demonstrate various automated 
video processing approaches, primarily based on CNN 
applications (Ditria et  al. 2020; Allken et  al. 2021; Yu 
et  al. 2022), which consequently lead to reduced 
demand for manual identification and count of species 
where the processing of one hour of video can require 
10 h of human labor (Rosen and Holst 2013; DeCelles 
et  al. 2017). The use of underwater cameras in regular 
commercial fishing gear may serve as a decision-support 
tool for the fishers. By implementing such systems in 
fishing nets—particularly trawls, which are the type 
of gear typically used in mixed-species fisheries—fish-
ers will be able to improve selectivity (i.e., catching 
target species and avoiding unwanted species).

Trawling typically lasts for several hours, resulting 
in significant amounts of data, which are often com-
plicated to analyze and infeasible to analyze manually. 
Thus, the automation of video data analysis is a crit-
ical focus in fisheries (Garcia et  al. 2020; Sokolova 
et  al. 2021a, 2021b). The promise of automated pro-
cessing pipelines lies in the field of deep learning, 
specifically CNN, and in traditional computer vision 
approaches that require feature engineering (Sokolova 
et  al. 2021a). Meanwhile, particular challenges for 
catch monitoring in demersal trawl video are caused 
by a lack of light, poor visibility caused by suspended 
sediments, and mixed species catch composition (Krag 
et  al. 2009; DeCelles et  al. 2017). Nonetheless, optical 
devices can facilitate species identification if quality 
images can be obtained. Sokolova et  al. (2021a, 2022) 
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developed an in-trawl image acquisition system for 
Nephrops norvegicus trawl fisheries applied during 
demersal trawling. The system reduces sediment in 
the camera field of view and assists automated pro-
cessing of the target species by means of contrast 
enhancement.

2.4.  Electronic monitoring

Electronic monitoring (EM) is an evolving tool uti-
lized by managers and fisheries scientists to remotely 
monitor the catches and bycatch onboard commercial 
vessels. EM is typically associated with an extensive 
collection of video recordings (1–2 TB per month, 
EPFA 2019; Román et  al. 2020) and manually review-
ing video footage is expensive and time-consuming, 
which fostered recent developments in automated 
video processing via ML. Many studies concentrate 
on species separation, identification, and counting of 
catches while fish are on a conveyor belt. The working 
environment aboard a fishing vessel provides unique 
challenges that can affect classification accuracy 
including difficult camera mounting locations, highly 
variable illumination (e.g., due to weather or 
below-deck lighting conditions), or fouling of the 
camera lens by dirt or water (Tseng and Kuo 2020; 
Lekunberri et  al. 2022). A strategy to overcome the 
latter would be to train an algorithm to detect dirt 
and water droplets on the lens and give an audible 
cue for the crew to clean the camera as necessary 
(Lekunberri et  al. 2022). EM systems often deploy 
wide-angle fisheye lenses mounted in corners to mon-
itor the largest spaces possible, ideal for man-made 
reviewing of video footage, but leading to distortion 
of objects in the image. For automated algorithms, a 
calibration process like placing a checkerboard pattern 
with known physical properties on a conveyor belt 
(French et  al. 2020) can transform video images to 
their correct physical dimensions. Lekunberri et  al. 
(2022) corrected a sub-optimal camera position above 
a conveyor belt via a simple transformation to rectify 
the skewed angle to obtain a zenith-angle position. 
This is particularly important if length measurements 
of individuals are estimated automatically via pixels 
to real length (in cm or mm) proxy, although this is 
yet only possible in a highly controlled environment 
with almost no overlap between fish individuals 
(Ovalle et  al. 2022). Alternatively, the lens bias can 
be accounted for in automated length estimation. 
Training an algorithm on stereo vision cameras (two 
neighboring cameras with overlapping fields of view), 
which are frequently used in noninvasive underwater 
monitoring of fish (Boldt et  al. 2018; Muñoz-Benavent 

et  al. 2018; Baker et  al. 2021), might be an additional 
way to improve length measurements as well as 
enabling algorithms to remove artifacts. In addition 
to automated length estimation, there is a recent study 
devoted to weight estimation. Sokolova et  al. (2023) 
present an end-to-end approach to predict the weight 
of an individual in parallel with species prediction 
and fish location in the 2D RGB image. The method 
is based on a YOLOv5 CNN with an additional output 
for weight prediction and is developed for discard 
registration onboard Dutch beam trawlers.

Current challenges are strongly associated with the 
respective fishery and the deployed gear types. A typ-
ical high-seas longline fishery targeting tuna or sword-
fish only catches a limited number of individuals at 
a time (Lu et  al. 2020; Tseng and Kuo 2020; Qiao 
et  al. 2021). Since few fish are handled on deck simul-
taneously, counting can be achieved with time thresh-
olding (minimum number of subsequent images with 
a fish identified to be counted) and distance thresh-
olding (individuals with a certain distance of their 
centroids are counted as separate). Here, the move-
ment of the crew covering the field of view, highly 
variable illumination due to day-night cycles and 
weather, as well as miscellaneous objects on deck pose 
a challenge for the algorithms. Applying a ResNEXt 
with a cascade RCNN in a Patagonian toothfish long-
line fishery below deck, Khokher et  al. (2022) found 
that camera positioning, image resolution, light con-
ditions, and limited training data complicated the 
detection of some bycatch species, whereas the target 
species and those with a unique appearance could be 
identified with greater success.

Aboard mixed trawlers, automated computer vision 
for fish identification and enumeration is additionally 
complicated by the large variety of target and bycatch 
species. Thus, a successful segmentation of relatively 
similar individuals on top of a conveyor belt is a 
crucial task. A first attempt within the complex com-
mercial environment was described by French et  al. 
(2015) who proposed foreground segmentation of 
individuals in discards via the N4—Fields algorithm 
(Ganin and Lempitsky 2014). Drawbacks include the 
need to train the algorithm for each belt separately, 
and the system only working with low resolution VGA 
footage as the segmentation becomes unreliable with 
higher resolution HD recording (French et  al. 2020). 
Subsequent work (French et  al. 2020) deployed a 
Mask-R-CNN for both object detection and segmen-
tation and a separate 50-layer ResNet for fish classi-
fication in various settings on research and commercial 
vessels, experiencing difficulties in across-vessel oper-
ationalization. Ovalle et  al. (2022) tested increasing 
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degrees of overlap between fish on a conveyor belt 
and obtained higher misclassification from a low over-
lap to a moderate overlap setting, and no reliable 
estimates of fish ID and counts in a typical high 
overlap situation common on commercial trawlers. 
Similarly, van Essen et  al. (2021) found a negative 
correlation between increasing levels of occlusion 
(10%–85%) and the classification performance of a 
trained YOLO v3 model using video footage of discard 
catches and debris from a North Sea beam trawler. 
These findings are supported by Sokolova et  al. 
(2023), who reported that the detection performance 
of discarded fish overall decreased with the increasing 
occlusion levels, specifically, when the occlusion 
exceeded 30%. Hoppers to reduce crowded environ-
ments have been suggested (Lekunberri et  al. 2022); 
however, such mechanical devices can be misused for 
illegal discards (Fernandes-Salvador et  al. 2022).

While automation of fish ID and counting via DL 
is possible in less crowded environments, it still lacks 
the necessary accuracy to be considered operational 
in a highly mixed setting with frequent occlusion, 
large size variation, similar looking species, and the 
presence of debris. Admittedly, this is also a challeng-
ing setting for human reviewers of EM footage as 
especially small fish in discards were frequently under-
estimated in various EM trials of the European mixed 
fishery (van Helmond et  al. 2020). Therefore, future 
applications in automating the EM review process 
should not only focus on optimizing algorithms but 
also standardizing the working environment, e.g., via 
controlling the flow of individuals on the conveyor 
belt with hoppers to reduce overlap (Khokher et  al. 
2022; Lekunberri et  al. 2022). For individual counting, 
tracking fish in subsequent images is often challenged 
by irregular conveyor belt movement. Tracking indi-
vidual objects in subsequent frames can be done via 
a combination of correlating RGB pixels and deep 
neural network features from the pooling layers of 
subsequent images (French et  al. 2020), applying an 
intersection-over-union tracker with a correlation filter 
for interpolating discontinued tracks (Khokher et  al. 
2022) or using a Kalman filter to track detections 
between images (van Essen et  al. 2021). Tracking fish 
for counting provides additional challenges and is 
largely reliant on the performance of the fish detector, 
leading to double counts if the tracker aborts prema-
turely, ghost counts of tracked background over 
missed tracks of small or rare fish, and overestimation 
of abundant fish (van Essen et  al. 2021). Alternatively, 
the raw video frames can be used to generate 
semi-linescan images, which eliminates the problem 
of the same fish individuals being present in multiple 

images (Sokolova et  al. 2023) reducing the potential 
sources of error.

Despite these advances in computer vision for spe-
cies ID and counting, fewer studies applied ML to 
other important tasks in EM systems. Qiao et  al. 
(2021) investigated how to identify catch events in 
video footage of a longline fishery using a CNN for 
object detection (simultaneous occurrence of fishers 
and fish in a frame) and a temporal filter for catch 
event detection, comparing the performance of several 
architectures including ResNet, GoogLeNet, DenseNet 
and YOLO. Such approaches significantly reduced the 
volume of video segments for manual reviewing, even 
if no additional ML tools for ID or counting were 
applied. Khokher et  al. (2022) discussed the use of 
ML to identify anomalies in fishers’ behavior e.g., in 
handling bycatch species if the movements of crew 
members were sufficiently distinct (like leaning over 
the vessel to cut a line in a longline fishery). Especially 
for protected species, which are removed before being 
visible in the camera field of view, crew behavior 
could be indicative of the occurrence of such an event 
(Pierre 2018). If EM is also used to monitor compli-
ance, where the fishers’ behavior—not only the catch—
is subject to analysis, ethical issues might hinder 
implementation. Deploying automated analysis of fish-
ers’ behavior for anomaly detection on-board can 
already collide with article 1 “right to human dignity,” 
article 8 “protection of personal data” and article 48 
“presumption of innocence and right of defence” of 
the EU Charter of Fundamental Rights and be con-
sidered a high-risk AI system (article 6(2) of the EU 
AI Act 2021) if it is “intended to be used for crime 
analytics regarding natural persons, allowing law 
enforcement authorities to search complex […] data 
sets […] in order to identify unknown patterns or 
discover hidden relationships in the data” (EU AI Act 
2021, Annex III).

3.  Analysis of fish and fisheries dynamics

3.1.  Stock/population level

To determine the status of fish stocks and their future 
development for sustainable harvesting, data sources 
from previous organizational levels (above) are aggre-
gated to derive estimates of important life cycle  
characteristics, which are fed into stock assessment 
models for use in management. ML approaches are 
either used to derive estimates of these life-history 
parameters or directly used to model/forecast stock 
dynamics. Additionally, if spatially resolved data are 
available, ML is used to infer the spatio-temporal 
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dynamics of different life stages through species- 
distribution modeling (SDM).

Differences in average biological traits among spe-
cies can be summarized in a few sets of life history 
parameters (e.g., growth, mortality, maturity) crucial 
to distinguishing stock boundaries (Begg et  al. 1999) 
and estimating sustainable harvest levels (Quinn and 
Deriso 1999). Some life history parameters cannot be 
directly measured without considerable cost and effort, 
and are often inferred from other more easily acces-
sible life history parameters (Thorson et  al. 2017). 
Many such life history parameters are derived from 
classical statistical mechanisms, deeply embedded in 
ecological/physiological theory, e.g., describing the 
growth of fish via a von Bertalanffy growth function 
(VBGF) or relating length to weight via a power law 
(Quinn and Deriso 1999). Attempts to replace these 
rather deterministic relationships with ML are limited 
(Benzer and Benzer 2016, 2019), but ML can build 
on mechanistic relationships (e.g., VBGF) for deriving 
general patterns in life history parameters over a 
broad range of species. Although not ML, the work 
of Thorson et  al. (2017) set the stage by relating seven 
life history parameters (natural mortality, growth, 
asymptotic maximum length and bodyweight, length 
and age at maturity, maximum age) of 32,000 fish 
species and their temperature ranges, together with 
taxonomic dependencies via a combination of factor 
analysis with an extension of major axis regression. 
Liu et  al. (2020) used tree-based learners (comparison 
of decision trees, bagged decision trees, RF and 
Boosted Regression Trees (BRT)) to infer natural mor-
tality from other estimates of 256 records of life-history 
parameters (K, L∞, tmax) for Chondrichthyes and 
Osteichthyes. BRT performed better relative to the fit 
of established empirical relationships, readily incor-
porating categorical taxonomical information and 
allowing for non-linear relationships. In a different 
example, Morais and Bellwood (2018) used BRT to 
model growth rates (Kmax) of reef fishes as a function 
of various traits (body size, diet, distance to reef) and 
their thermal environment. The authors asserted that 
this is particularly useful to assess the growth pattern 
of unmeasured reef species and allow analysis of 
community-level growth patterns.

Modeling the stock-recruitment relationship is 
highly important for fisheries management (Houde 
2008). Ecological theory provides various mechanistic 
functional forms (such as Beverton-Holt, Cushing, 
Ricker) to relate spawning stock biomass (SSB) to the 
number of offspring recruiting to the fishery, but 
environmental variability acting on various temporal 
and spatial scales can largely obscure this relationship. 

The use of ML approaches was motivated by their 
ability to model non-linear relationships, and flexibil-
ity in their functional form without the need to define 
a relationship a priori and/or taking interactions into 
account (Chen and Ware 1999; Megrey et  al. 2005; 
Smoliński 2019). Most of the earlier work exclusively 
focused on deploying neural networks (Chen and 
Ware 1999; Chen et  al. 2000; Huse and Ottersen 2003; 
Megrey et  al. 2005). In general, there is a rather nar-
row focus on applying established methods like neural 
networks, RF (Smoliński 2019; Kühn et  al. 2021) and 
Naïve Bayes (Fernandes et  al. 2010, 2015). Fernandes 
et  al. (2010) compared several machine learning meth-
ods (Naïve Bayes, Tree augmented Naïve Bayes, SVM, 
MLP, and Decision trees) without any outperforming 
the Naïve Bayes model. As a probabilistic model with 
graphical representation, Naïve Bayes is appropriate 
for communication to end-users, contrary to black 
box approaches. Fernandes et  al. (2015) combines the 
benefits of Naïve Bayes with kernels (usually used in 
SVM) to get the advantages of Bayesian networks and 
the flexibility of SVM. Looking forward, a newly 
emerging field called “scientific ML” (Rackauckas et  al. 
2020) or “physics-informed ML” (Karniadakis et  al. 
2021) generates hybrid models substituting part of a 
dynamical system/mechanistic model (a set of differ-
ential equations) with a ML model. Constraining the 
ML model by known mechanistic relationships allows 
harnessing advantages of both worlds – the data-driven 
universal approximation ability of ML and the mech-
anistic understanding and traceability that mathemat-
ical models provide. The combination allows for 
improved extrapolation ability of the model under a 
data-limited setting where pure ML approaches have 
a hard time. Various successful applications span a 
variety of disciplines ranging from climate/earth-system 
science (Reichstein et  al. 2019; Kashinath et  al. 2021), 
epidemiology (Dandekar et  al. 2020) and biomedicine 
(Lagergren et  al. 2020; Sahli Costabal et  al. 2020). For 
example, Rackauckas et  al. (2020) demonstrated the 
approach using the Lotka-Volterra predator-prey sys-
tem from theoretical ecology. In this example, the 
authors had only a short time series of known prey 
birth rates and predator death rates, and they substi-
tuted the unknown degree of interactions between 
predator and prey with a neural network (neural dif-
ferential equations). They replicated the unknown 
dynamics and extrapolated further in time, even 
though the training data did not include a full cycle 
of the unfolding dynamics. Population models in fish-
eries science, ranging from relatively simple surplus 
production models to fully age-structured models 
could also benefit from an incorporation of ML, to 
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approximate unknown hidden dynamics of hard-to-
measure biological parameters or environmental forc-
ing. An attempt in this direction was made by Lüdtke 
and Pierce (2023) combining a stock assessment 
model with a BRT for post-hoc corrections.

The spatial distribution of species is regularly sam-
pled through research surveys and commercial catches. 
Spatially resolved data can help to identify important 
life history events like spawning aggregations 
(González-Irusta and Wright 2016; Miesner and Payne 
2018), resolve nursery and feeding grounds relevant 
to conservation and management needs (Katara et  al. 
2021) or infer stock/population boundaries (Palacios- 
Abrantes et  al. 2020). Additionally, spatially resolved 
data can inform estimates of bycatch (Stock et  al. 
2020) or reduce the impacts of choke species via 
optimization of species-specific catch ratios in mixed 
species fisheries (Dolder et  al. 2018). The spatial data 
can be used to inform species distribution models 
(SDM). The use of ML methods in SDM modeling 
is widely established, which is in part attributed to a 
series of papers providing a tutorial-like introduction 
to the use of BRT (Elith et  al. 2008) and MAXENT 
(Elith et  al. 2011) for SDM. The emergence of an 
easy-to-use implementation of a variety of ML algo-
rithms and model ensembles in R via packages like 
“BIOMOD” (Thuiller et  al. 2009), “dismo” (Hijmans 
et  al. 2020) or “sdm” (Naimi and Araújo 2016), facil-
itated the widespread use of ML for SDM.

Some challenges in SDM are specific to the marine/
fisheries realm and are pertinent to the successful 
usage of ML. Species and environmental data are often 
not sampled at the same spatial resolution, as the 
former often originates from monitoring programmes 
with scarce spatial resolution, whereas the latter can 
be a highly resolved output from biogeochemical or 
ocean models as well as remote sensing (satellite) data 
products. Data matching at a common spatial reso-
lution before modeling are, therefore, needed and is 
often done at the highest spatial scale possible. This 
is not necessarily the best practice, however, as Núñez‐
Riboni et  al. (2021) reported lower prediction errors 
if both the environmental dataset and the biological 
dataset were downsampled to an intermediate spatial 
resolution. Additionally, the choice of model validation 
greatly affects the generalizability of the model. 
Cross-validation approaches are typically employed to 
evaluate model fit and predictive performance. 
Random cross-validation (randomly dividing the data 
into a train and test set) without considering spatial 
and temporal autocorrelation can greatly overestimate 
model generalizability. Several authors therefore sug-
gest a form of blocked cross-validation (Hijmans 2012; 

Boria et  al. 2014; Roberts et  al. 2017; Valavi et  al. 
2019), dividing the study area into different spatial 
(or spatio-temporal) strata. The challenge here lies in 
the careful selection of strata to avoid unintended 
extrapolation and therefore, overestimation of inter-
polation error (Roberts et  al. 2017). On the other 
hand, if extrapolation is the goal, blocked cross- 
validation can be used to measure extrapolation error. 
This is particularly important when projecting a spe-
cies outside its historical home range and time, as is 
frequently done to assess invasion potential or changes 
in species distributions under climate change. De la 
Hoz et  al. (2019) argue that only assessing internal 
validation does not necessarily result in models that 
can be transferred in space and time, raising concerns 
about modeled future distributions of a species and 
derived management needs. If climate change effects 
are evaluated, model building should include transfer 
in time as well as assessing the overlap between fitted 
and projected environmental variables. Muhling et  al. 
(2020) found that SDM (BRT, RF, ANN, GAM) for 
Pacific anchovy and sardine lost considerable predic-
tive power if tested during a marine heat-wave event, 
representing a strong shift in an environmental covari-
ate that is likely occurring to play a greater role under 
ongoing climate change.

3.2.  Metier and fleet

How, when and where fishers fish are key questions 
to track changes in fishing distribution, monitor the 
effectiveness as well as enforcement of spatial man-
agement (e.g., MPA) or assess the impacts of fishing 
on other parts of the ecosystem. A recent proliferation 
of remotely collected locations of fishing and 
non-fishing vessels at sea has created vast new oppor-
tunities for exploring the behaviors of vessels, iden-
tifying metiers (Joo et  al. 2011; Russo et  al. 2011, 
2016), improving estimates of unobserved fishing 
effort (Kroodsma et  al. 2018), mapping the spatial 
extent of fishing grounds (Kroodsma et  al. 2018; 
Taconet et  al. 2019), comparing fishery carbon foot-
prints (McKuin et  al. 2021), inferring illegal fishing 
activities (Belhabib et  al. 2020; Park et  al. 2020; Seto 
et  al. 2022), and even elucidating human rights abuses 
at sea (McDonald et  al. 2021a)

In the last two decades, there has been a rapid 
expansion in the use of Automatic Identification 
Systems (AIS) for collision avoidance and Vessel 
Monitoring Systems (VMS) for fisheries enforcement. 
Fundamentally, these data sets have a set of latitude 
and longitude spatial coordinates, a unique identifier 
for an individual vessel, and a time stamp. The AIS 
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and VMS data are transmitted at regular intervals - 
nearly continuously in the case of AIS and ranging 
from minutes to hours for VMS. Analyzing this vast 
resource of data can be cumbersome with traditional 
methods, and underscores the computational gains 
from ML. Initially, many studies with AIS and VMS 
data had a similar approach to their analysis as studies 
analyzing satellite tag data from biological tagging 
projects. Analytical approaches often include examin-
ing vessel speeds, turning behaviors, geospatial attri-
butes (e.g., distance from shore, bathymetry), 
environmental data (e.g., sea surface temperature), 
and other features that can be used as inputs to AI 
models for classification of vessel behaviors (e.g., tran-
siting, fishing, searching for fish, trans-shipping). 
Kroodsma et  al. (2018) as well as Taconet et  al. (2019) 
published a seminal application of neural networks 
to these data enabling the classification of vessel types 
and facilitating the mapping of fishing areas globally 
in comparison with catch distribution (Watson 2017). 
Moreover, the AI analyzed data set from this work 
has been made publicly available and is updated reg-
ularly, facilitating several of the other vessel analyses 
mentioned above (e.g., Park et  al. 2020; White et  al. 
2020). A major challenge with using VMS and AIS 
data is the quality and frequency of transmissions. 
Some of the more elaborate illegal fishing efforts 
include spoofing (intentionally altering, disabling, or 
otherwise obfuscating) their AIS location signals 
(Welch et  al. 2022). Meanwhile, with VMS data, the 
transmission intervals in some cases can either be 
inconsistent or simply infrequent enough that gaps in 
data sets can diminish the accuracy of models due to 
missing some fishing events (Watson and Haynie 
2016). Finally, another challenge is the lack of labeled 
data available to many analysts for training models. 
Without EM or observer data associated with VMS 
or AIS data, it can be difficult to match vessel behav-
iors precisely with the activities associated with their 
different movements. When it comes to inferring 
unmeasured attributes with high ethical and political 
implications from vessel tracks like forced labor or 
illegal fishing activity, attention should be given to 
the occurrence of false positives. Identification of a 
class membership, when in fact there is none, can 
result in unjust sanctioning and discrimination of 
affected vessels (see the discussion around McDonald 
et  al. (2021a) in McDonald et  al. (2021b) and Swartz 
et  al. (2021)). A similar issue is the possible scale 
dependency in the analysis of fishing pressure. Queiroz 
et  al. (2019) resolved the global overlap between 
pelagic longline fisheries identified via ML by 
Kroodsma et  al. (2018) and the spatial distribution 

of pelagic sharks to identify risk hotspots of shark 
bycatch and intentional catches. Even if results are 
correct at a global scale and are looked upon at a 
regional level by experts, the enormity of the data set 
(>70k AIS tracked vessels in this case) can result in 
misidentification on a localized scale (Queiroz et  al. 
2019, 2021). Harry and Braccini (2021) identified false 
positives in this classification of pelagic longliners 
leading to an overestimation of fishing pressure 
hotspots in certain regions in Australian waters with 
likely implications for conservation and management. 
Still, by refining classification algorithms, some of 
these problems could be resolved (Queiroz et  al. 
2021). In summary, a better balance of positive and 
negative cases in training data (Swartz et  al. 2021), 
ground-truthing of model results (Harry and Braccini 
2021; Queiroz et  al. 2021; Swartz et  al. 2021), aware-
ness of scale-dependency (Harry and Braccini 2021) 
and reporting and propagating the uncertainty of class 
membership in the model pipeline (Swartz et  al. 2021) 
can help to alleviate these problems and improve trust 
in using ML for law enforcement, conservation, and 
management. ML has been also used for fishing 
grounds identification for tuna species that reduces 
the chances of incidental fishing of sharks (Goikoetxea 
et  al. 2024). Recent work has combined ML forecasts 
of the presence of high biomass species and fuel con-
sumption with route optimization metaheuristics to 
reduce fuel consumption and consequent emissions 
(Granado et  al. 2021, 2024).

3.3.  Ecosystem

Understanding interactions among species and the 
environment has significant ecological and societal 
implications for predicting nature’s response to natural 
and anthropogenic changes. Such interactions are fur-
ther exacerbated by spatial and temporal variation of 
the ecosystem and its components (Polis et  al. 1996; 
Hunsicker et  al. 2011; Doney et  al. 2012). Stressors 
such as climate change, fishing, and resource exploita-
tion have been shown to drive ecosystem dynamics 
(Blanchard et  al. 2012; Lotze et  al. 2019).

ML has been used to examine ecosystem-level chal-
lenges for assessing the effects of fishing on non-target 
species in the form of risk analysis, delineating key 
habitats of target or vulnerable species (Brownscombe 
et  al. 2020), assessing the degree of predator-prey 
interactions in time and space (Griffin et  al. 2022), 
identifying drivers of ecosystem change, predicting 
ocean states (e.g., hypoxia, algae blooms) with impli-
cations on fisheries (Politikos et  al. 2021b) or evalu-
ating the impact of regional (e.g., wind farms 
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(Friedland et  al. 2021)) and global (climate change 
(Cheung et  al. 2021)) changes on fish and fishing 
opportunities. Spatial risk assessment on non-target 
species like marine mammals (Breen et  al. 2017), sea 
turtles or birds (Cleasby et  al. 2022) is predominantly 
done via SDM by examining the overlap of modeled 
species distributions with indicators of fishing pressure 
(e.g., effort maps). While distribution models would 
be ideal for the prediction of population dynamics in 
the face of multiple stressors, these are constrained 
due to habitat heterogeneity and plasticity in animal 
abundance and behavior across space and time 
(Matthiopoulos et  al. 2022). Therefore, a pragmatic 
approach for risk assessment to support Ecosystem 
Based Fisheries Management (EBFM) under hetero-
geneous data, including data with different spatial or 
temporal resolution and of both quantitative and qual-
itative nature, are probabilistic ML methods such as 
Bayesian networks (Uusitalo 2007; Hart and Pollino 
2008; Kaikkonen et  al. 2021)

As applied in ecology, Bayesian networks represent 
probabilistic dependencies among species and eco-
system factors that influence variables’ likelihood in 
an intuitive, graphic form (Jensen 2001); therefore, 
different expertise can provide quantitative indicators 
for a range of possible scenarios in support of stra-
tegic advice on potential ecosystem responses. 
Contrary to black-box ML approaches, the visual 
nature of Bayesian networks can help to communicate 
modeling results and allow a variety of perspectives 
of natural and anthropogenic effects to be represented 
(Levontin et  al. 2011), while explicitly handling 
uncertainty associated with predictions (Fernandes 
et  al. 2010). With the recent adoption of Bayesian 
Networks in predictive ecology, few assumptions can 
be made about the data and complex, spatially vary-
ing interactions can be recovered from collected field 
data (Trifonova et  al. 2015).

Bayesian networks have been proposed as a method 
to formalize conceptual models of social-ecological 
systems and project system responses to environmen-
tal management interventions (McCann et  al. 2006; 
Landuyt et  al. 2013; Reum et  al. 2021). By integrating 
spatial relationships, Bayesian networks have been 
used to resolve conflicts in the context of marine 
spatial planning between fisheries and aquaculture 
which revealed alternative fishing locations (Coccoli 
et  al. 2018). Similarly, the approach has been used to 
identify suitable areas for offshore wave and wind 
energy sites (Pınarbaşı et  al. 2019; Maldonado et  al. 
2022). The spatially explicit Bayesian network models 
and the resulting suitability maps demonstrated the 
feasibility of using such techniques during site 

identification processes across different activities, envi-
ronmental challenges and technological constraints.

Bayesian network ecosystem models can be used 
to explore a range of “what-if?“ scenarios, based on 
potential physical changes (e.g., increase in tempera-
ture) or anthropogenic marine use (increase vs 
decrease in fishing), and the specific trends (increases 
or declines) of different ecosystem components in 
response to these changes can be explored. For exam-
ple, Trifonova et  al. (2017) used a Dynamic Bayesian 
Network model with a hidden variable and spatial 
autocorrelation to explore the future of different fish 
and zooplankton species, given alternate scenarios, 
and across spatial scales within the North Sea. They 
were able to predict for most fish species a trend of 
increasing or decreasing abundance in response to 
changes in fisheries catches. This varied across space, 
outlining the importance of trophic interactions and 
the spatial relationship between neighboring areas. 
They were also able to predict trends in zooplankton 
biomass in response to temperature change, with the 
spatial patterns of these effects varying by species. 
Crucially, dynamic Bayesian network models allow for 
both species-specific population trends at an 
ecosystem-wide scale in different habitat types to be 
predicted, as well as for the main indicators of strong 
changes in any of these trends to be identified 
(Trifonova et  al. 2021). Most importantly, Trifonova 
et  al. (2021) showed that the strength of such indi-
cators (i.e., ecosystem components or variables) may 
also vary over time, thus the need to consider both 
the spatial and temporal variability of indicators 
throughout the trophic chain is critical to ensuring 
that the strongest and most consistent, highly pre-
dictable indicators, of ecosystem change, are used. 
Uusitalo et  al. (2018) and Maldonado et  al. (2019) 
fitted a series of Dynamic Bayesian Networks with 
different models and hidden variable structures to a 
system known to have undergone a major structural 
change, i.e., the Baltic Sea food web. The authors 
found that the exact configuration of the model or 
its hidden variables did not considerably affect the 
result, and the hidden variables detected a pattern 
that agreed with previous research on the system 
dynamics. The models used observed data, but relied 
on ecological knowledge on the species relationship, 
reducing the requirement for data. The models are 
not transferable from one area to another, however, 
and must be designed specifically for each case study.

The success of using a hidden variable to identify 
indicator species of key importance to the ecosystem 
dynamics has also helped illuminate the possible 
mechanisms behind functional ecosystem changes in 
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the North Sea (Trifonova et  al. 2015) and Gulf of 
Mexico (Trifonova et  al. 2019). Hidden variables can 
detect ecological patterns in the data that agree with 
ecosystem change that might not be strictly repre-
sented within the model structure and can reduce the 
likelihood of introducing spurious interactions that 
allow for more plausible modeling network structures 
(Tucker and Liu 2004). This is useful in ecosystem 
modeling where complex ecological interactions 
change in time due to changing pressures at different 
levels of the trophic chain. Using dynamic Bayesian 
network models with hidden variables, (Tucker and 
Duplisea 2012) predicted functional collapse across 
three different geographical regions (I.e., Georges 
Bank, East Scotian Shelf and North Sea). Specifically, 
a range of ML techniques (wrapper feature selection, 
classification and a functional equivalence algorithm 
which used a simulated annealing approach) were 
applied to fisheries data to identify species that per-
form similar functional roles in different fish com-
munities. The study provided real insights into why 
fished ecosystems collapse and why they sometimes 
do not recover when a perturbation stops.

3.4.  Fisheries management

Successful fisheries management often involves creat-
ing a model of a system, including the harvested 
resource and the fishing agents, and delivering rec-
ommendations on a level of harvesting to sustain the 
system in the long run. Taking out the maximum 
yield while leaving enough for sustainable regrowth 
is often defined as the goal (i.e., Maximum Sustainable 
Yield). Other goals such as Maximum Economic Yield 
or additional objectives within an ecosystem perspec-
tive (e.g., minimum seafloor disturbance) might also 
be of interest. A valuable tool for fisheries manage-
ment is Management Strategy Evaluation (MSE), sim-
ulating various levels of exploitation within the 
perceived system often in the form of harvest-control 
rules trying to find the optimal harvesting strategy 
(Punt et  al. 2016). MSE is similar to a type of ML 
called reinforcement learning, aiming to learn a strat-
egy (or policy) by itself via positive or negatives 
incentives. Recent prominent examples of this learning 
type comprise algorithms like Alpha Go Zero (Silver 
et  al. 2017) that surpassed the best human player in 
the complex board game Go in 2017 or an AI that 
plays several Atari games (like space invaders) at a 
superhuman level (Mnih et  al. 2015). In reinforcement 
learning, a learning agent interacts with an environ-
ment through the perception of the environment’s 
state. Based on the state, an agent can select an action 

and enter a new state, receiving a delayed reward as 
a consequence of one or several of its actions. The 
goal is to learn a strategy to best interact with the 
given environment to maximize the total amount of 
reward earned (Sutton and Barto 2018). A simple 
formulation of fisheries management as a reinforce-
ment learning problem, with the objective of maxi-
mizing the aggregated reward over time, would involve 
the distribution of a fish stock within the ocean as 
environment, fishers moving around and harvesting 
this resource as agents, fisheries yield or revenue as 
rewards and fuel costs as negative incentives. One of 
the first attempts using reinforcement learning to 
explore fishing patterns and their changes due to man-
agement regulations was made by Dreyfus-Leon 
(1999). The author used two shallow neural networks 
guiding the decisions of a vessel moving within or 
between fishing locations. The model was extended 
to multiple agents and applied to the east Pacific yel-
lowfin tuna fishery in Dreyfus-Leon and Kleiber 
(2001) as well as aspects of information sharing 
between vessels in a more theoretical approach 
(Dreyfus-Leon and Gaertner 2006). Similarly Russell 
and Zimdars (2003), later updated with a DL approach 
(Deep Q-Learning) by Bouton et  al. (2019), explored 
how to manage multiple agents (fishers) to harvest a 
common resource sustainably in analogy to a fisheries 
commissioner finding an optimal quota distribution 
among fleets. Bailey et  al. (2019) explored various 
management policies ranging from an open-access 
situation to fishery-wide quotas via total allowable 
catch and individual tradable quotas, and amidst spa-
tial closures/reserves with their agent-based model 
POSEIDON. The fishers’ decisions in this scenario 
were modeled as a multi-armed bandit problem 
(Sutton and Barto 2018), a classic reinforcement learn-
ing type formulation in situations where agents are 
allowed to choose an option among several finite ones 
to maximize their reward. In large environments with 
many agents, reinforcement learning is hampered by 
the curse of dimensionality with an increasing number 
of possible actions. Here, heuristic search algorithms 
can be used to explore possible multi-faceted actions 
(Carrella et  al. 2019) or a decomposing state space 
and approximate more complex actions via DL 
(Bouton et  al. 2019). The presented approaches sum-
marize attempts in the development of agent-based 
fisheries ML models to understand fishing patterns 
and to derive new effective policies (e.g., quota  
allocations among multiple fleets with multiple objec-
tives). Although reinforcement learning for manage-
ment and decision-making is currently more of a 
theoretical exercise in conceptual models that lack 
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real-life implementations (Chapman et  al. 2021), their 
close resemblance to the iterative approach of adaptive 
management and MSE shows potential for the future 
of fisheries management.

Dynamic ocean management approaches have been 
increasingly explored in recent years to rapidly incor-
porate the latest environmental information into exist-
ing ML approaches and generate spatially explicit 
forecasts for species targeting or avoidance (e.g., 
Hazen et  al. (2018); Breece et  al. (2021)). Many such 
approaches are operated by BRT (Elith et  al. 2008) 
that are trained on historic data and then imple-
mented on new data as they are acquired from sat-
ellites or other sources, often in near real-time. In 
the EcoCast application (Welch et  al. 2020), BRT 
generate SDM for both target species (swordfish) and 
bycatch species (turtles, sharks, sea lions) as functions 
of satellite data (e.g., sea surface temperature, chlo-
rophyll) and produce pixelated maps for which each 
pixel is colored based on predicted ratios between 
these target and bycatch species. This near real-time 
tool is updated daily online, providing fishers with a 
decision analysis tool to help them avoid bycatch. 
Many fisheries lack sufficient observer and other spa-
tially explicit data to support such tools, but EcoCast 
is illustrative of the types of operations that AI/ML 
approaches will increasingly facilitate.

4.  A Way forward: trustworthy AI

While ML in fisheries bears various opportunities, 
precautionary measures must be taken to avoid under-
mining the trust of scientists, fishers, managers and 
stakeholders (Sohns et  al. 2022). First and foremost, 
privacy issues and ethical concerns of fishers need to 
be taken seriously, especially when it comes to video 
surveillance on board vessels. Data use should be 
stated beforehand, and permissions renewed if addi-
tional use within ethical boundaries and legislations 
is desired, especially if human images or behaviors 
can be identified or inferred. Lack of transparency 
regarding the extent of data use could greatly decrease 
trust in ML applications.

Additional concerns exist around biases in training 
data and algorithms leading to predictive profiling 
– suspecting a certain behavior (e.g., illegal fishing) 
from an individual based on past experiences or close 
resemblance to other individuals exerting this behavior 
(Probst 2020). False positives in this regard are par-
ticularly detrimental in automated vessel classification, 
if certain behaviors may trigger sanctions or enforce-
ment actions. In addition, biases in fully automated 
biological sampling and analysis can be greatly 

amplified with effects on stock assessment and man-
agement. Practitioners should be aware of potential 
pitfalls regarding domain shifts, in which discrepancies 
arise between model training data versus data with 
which models are deployed, leading to unintended 
extrapolation of algorithms. Such failures, together 
with the perception of ML as a black box could lead 
to misperceptions or distrust by stakeholders around 
stock quotas and management rules (Sohns et al. 2022).

Critiques on the black-box nature of ML may be 
justified when it comes to adversarial attacks—inten-
tional modifications of data/imagery that are meant 
to break a classifier, via exploiting the classification 
boundaries and provoking a completely opposite clas-
sification. Prominent examples include stickers being 
placed on an object, e.g., resulting in misclassifying 
a stop sign as a speed sign (Eykholt et  al. 2018), 
images that are always classified as a toaster (Brown 
et  al. 2018), or a 3D-printed turtle that is seen as a 
harmful rifle (for an overview see Akhtar and Mian 
2018). Although examples from fisheries are yet hard 
to imagine, Global Fishing Watch reported several 
artificially simulated AIS tracks that were fed to a 
public AIS web page and picked up in analysis for 
marine monitoring (Bergman 2021). Systematic data 
analysis and careful cross-referencing with additional 
data sources like satellite imagery made it possible to 
identify these tracks. Nonetheless, without careful 
review, it is possible for publicly available data to 
include adversarial or malicious examples capable of 
shifting the decision boundaries of a classifier. 
Although manipulation of AIS signals and data sets 
to such an extent is an exception rather than a rule, 
it is a notable example of potential problems that 
intelligent systems can face. This example highlights 
the importance of good knowledge of the data being 
used by using checks (manual and/or automated) and 
revisiting the data in contrast with other data (e.g., 
AIS vs VMS and Catches in Taconet et  al. 2022).

When using confidential data, e.g., georeferenced 
data that allows for identifying individual vessels 
and exposing their fishing locations, scientists typ-
ically aggregate analysis steps to cautiously ano-
nymize results. Often, this is done manually before 
any statistical model is applied. The introduction of 
DL methods, working best on raw, disaggregated 
data bears the risk of breaching confidential infor-
mation. Even if ML practitioners guard against a 
negligent breach, confidential information can still 
be inferred via a malicious attack on the trained 
model. The flow of information in a ML model is 
not one-way but can be reversed, reconstructing the 
raw training data or some subset from a trained 
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model, called model inversion (Veale et  al. 2018). 
The possibility of model inversion and membership 
inference attacks, the latter seeking to identify an 
individual as part of the training set, suggests that 
some models themselves may warrant considerations 
as confidential data. This finding has implications 
for reporting results, the ever-growing open acces-
sibility of models, and the possibility for new users 
to openly apply existing models to their own data. 
To remedy this, data can be anonymized before any 
processing.

5.  Conclusion and outlook

ML is transforming fishery science and management 
in various ways, ranging from automation of data 
sampling and simplification of labor-intensive tasks 
to inference of stock and fleet dynamics to a higher 
level of individual guidance in management systems. 
Notably, the automation of biometric measurements 
from fish drives expectations of standardization across 
institutes/working groups to reach a level of indepen-
dence from various human biases. The utilization of 
transfer learning, simply modifying (e.g., training only 
the last layer of a complex CNN) a pre-trained model 
to a new task or situation is a cost-effective approach 
that can accelerate data collection. Similarly, ML offers 
various opportunities for inference and analysis, 
enabling the utilization of large data sets from differ-
ent sources where human experience may be limited 
or where relationships are poorly understood. It must 
be remembered, however, that systems, methods, and 
applications are at different stages of operational read-
iness. In recent years, with the advent of DL, numer-
ous studies sought to automate steps in the data 
collection pipeline, with most of them still considered 
under development, before being readily deployed in 
the field/industry. One of the main challenges remains 
to reach an adequate level of generalization under 
nonstandardized conditions in different environments. 
When it comes to inferring stock dynamics, there is 
already a wider use of traditional ML, but DL appli-
cations are still limited. Meanwhile, overcoming the 
challenges of AIS/VMS data, especially around data 
sizes, is a perfect application for ML. ML applications 
in stock assessment and management are currently 
only rarely considered, but they show great promise 
for the future if they gain trust, despite their black-box 
nature. Finally, as more ecosystem models use ML 
techniques, it is important to exploit the strengths of 
each model type, while understanding how they differ 
and finding ways to generalize their outcomes to 

strengthen projections under a range of natural and 
anthropogenic scenarios.
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